Spaces:
Sleeping
Sleeping
""" | |
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
import re | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem import WordNetLemmatizer | |
import logging | |
# Setup logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Download necessary NLTK resources | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
# Initialize the zero-shot classification pipeline | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
# Streamlit interface setup | |
st.title("Resume-based Personality Prediction by Serikov Ayanbek") | |
resume_text = st.text_area("Enter Resume Text Here", height=300) | |
# Load data from Excel | |
data = pd.read_excel("ResponseTest.xlsx") | |
data_open = pd.read_excel("ResponseOpen.xlsx") | |
# Define preprocessing function | |
def preprocess_text(text): | |
text = re.sub(r'\W', ' ', str(text)) | |
text = text.lower() | |
text = re.sub(r'\s+[a-z]\s+', ' ', text) | |
text = re.sub(r'^[a-z]\s+', ' ', text) | |
text = re.sub(r'\s+', ' ', text) | |
stop_words = set(stopwords.words('english')) | |
lemmatizer = WordNetLemmatizer() | |
tokens = text.split() | |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] | |
return ' '.join(tokens) | |
# Prepare the data for prediction | |
data['processed_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text) | |
data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) | |
data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) | |
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] | |
# Function to predict personality and log the predictions | |
def predict_and_log(data, prediction_column, process_text_column, true_label_column=None, custom_labels=None): | |
for index, row in data.iterrows(): | |
processed_text = row[process_text_column] | |
if custom_labels: | |
result = classifier(processed_text, [row[label] for label in custom_labels]) | |
else: | |
result = classifier(processed_text, labels) | |
highest_score_label = result['labels'][0] | |
data.at[index, prediction_column] = highest_score_label | |
true_label = row[true_label_column] if true_label_column else 'Not available' | |
data_id = row['id'] | |
logging.info(f"Row {data_id}: True Label - {true_label}, {prediction_column} - {highest_score_label}") | |
# Predict and log results for each DataFrame | |
# predict_and_log(data, 'Predicted', 'processed_text', true_label_column='True_label', custom_labels=['MAX1', 'MAX2', 'MAX3']) | |
predict_and_log(data_open, 'Predicted_F', 'processed_text_open', true_label_column='True_label') | |
predict_and_log(data_open, 'Predicted_M', 'processed_text_mopen', true_label_column='True_label') | |
# Optionally display a confirmation message | |
st.write("Predictions have been logged. Check your logs for details.") | |
import streamlit as st | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix | |
from sklearn.preprocessing import LabelEncoder | |
# Load data | |
data = pd.read_excel("ResponseOpenPredicted.xlsx") | |
st.title("Resume-based Personality Prediction by Serikov Ayanbek") | |
# Function to calculate metrics | |
def calculate_metrics(true_labels, predicted_labels): | |
accuracy = accuracy_score(true_labels, predicted_labels) | |
precision, recall, f1_score, _ = precision_recall_fscore_support(true_labels, predicted_labels, average='weighted') | |
return accuracy, precision, recall, f1_score | |
# Metrics Calculation | |
accuracy_f, precision_f, recall_f, f1_score_f = calculate_metrics(data['True_label'], data['Predicted_F']) | |
accuracy_m, precision_m, recall_m, f1_score_m = calculate_metrics(data['True_label'], data['Predicted_M']) | |
# Encode labels for better visualization | |
le = LabelEncoder() | |
data['True_label_encoded'] = le.fit_transform(data['True_label']) | |
data['Predicted_F_encoded'] = le.transform(data['Predicted_F']) | |
data['Predicted_M_encoded'] = le.transform(data['Predicted_M']) | |
# Plotting function for confusion matrices | |
def plot_confusion_matrix(true_labels, predicted_labels, title): | |
conf_matrix = confusion_matrix(true_labels, predicted_labels) | |
fig, ax = plt.subplots() | |
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", ax=ax, | |
xticklabels=le.classes_, yticklabels=le.classes_) | |
plt.title(title) | |
plt.xlabel('Predicted Labels') | |
plt.ylabel('True Labels') | |
st.pyplot(fig) | |
# Plotting function for distribution of predictions | |
def plot_predictions_distribution(data, column, title): | |
fig, ax = plt.subplots() | |
sns.countplot(x=column, data=data, palette="viridis") | |
plt.title(title) | |
plt.xlabel('Predicted Labels') | |
plt.ylabel('Count') | |
plt.xticks(rotation=45) | |
ax.set_xticklabels(le.classes_) | |
plt.subplots_adjust(bottom=0.2) | |
st.pyplot(fig) | |
# Streamlit app structure | |
st.title('Model Performance Evaluation') | |
st.subheader('Performance Metrics') | |
st.write(f"Accuracy for Predicted_F: {accuracy_f:.2%}") | |
st.write(f"Precision for Predicted_F: {precision_f:.2%}") | |
st.write(f"Recall for Predicted_F: {recall_f:.2%}") | |
st.write(f"F1-Score for Predicted_F: {f1_score_f:.2%}") | |
st.write(f"Accuracy for Predicted_M: {accuracy_m:.2%}") | |
st.write(f"Precision for Predicted_M: {precision_m:.2%}") | |
st.write(f"Recall for Predicted_M: {recall_m:.2%}") | |
st.write(f"F1-Score for Predicted_M: {f1_score_m:.2%}") | |
st.subheader('Confusion Matrices') | |
plot_confusion_matrix(data['True_label_encoded'], data['Predicted_F_encoded'], 'Confusion Matrix for Predicted_F') | |
plot_confusion_matrix(data['True_label_encoded'], data['Predicted_M_encoded'], 'Confusion Matrix for Predicted_M') | |
st.subheader('Distribution of Prediction Results') | |
st.write("Distribution for Predicted_F") | |
plot_predictions_distribution(data, 'Predicted_F_encoded', 'Distribution of Predictions for Female Demographic') | |
st.write("Distribution for Predicted_M") | |
plot_predictions_distribution(data, 'Predicted_M_encoded', 'Distribution of Predictions for Male Demographic') | |
""" | |
import streamlit as st | |
from transformers import pipeline | |
import re | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem import WordNetLemmatizer | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
# Initialize the zero-shot classification pipeline | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
# Define the candidate labels according to the Enneagram types | |
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] | |
# Streamlit interface | |
st.title("Resume-based Personality Prediction") | |
resume_text = st.text_area("Enter Resume Text Here", height=300) | |
# User-defined labels option | |
user_labels = st.text_input("Enter custom labels separated by comma (optional)") | |
labels = user_labels.split(',') if user_labels else default_labels | |
# Prediction confidence threshold | |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) | |
if st.button("Predict Personality"): | |
# Text Preprocessing | |
def preprocess_text(text): | |
text = re.sub(r'\W', ' ', str(text)) | |
text = text.lower() | |
text = re.sub(r'\s+[a-z]\s+', ' ', text) | |
text = re.sub(r'^[a-z]\s+', ' ', text) | |
text = re.sub(r'\s+', ' ', text) | |
stop_words = set(stopwords.words('english')) | |
lemmatizer = WordNetLemmatizer() | |
tokens = text.split() | |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] | |
return ' '.join(tokens) | |
processed_text = preprocess_text(resume_text) | |
# Make prediction | |
result = classifier(processed_text, labels) | |
# Display the results | |
st.write("Predictions (above confidence threshold):") | |
displayed = False | |
for label, score in zip(result['labels'], result['scores']): | |
if score >= confidence_threshold: | |
st.write(f"{label}: {score*100:.2f}%") | |
displayed = True | |
if not displayed: | |
st.write("No predictions exceed the confidence threshold.") | |
""" | |
import streamlit as st | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
# Initialize the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-mnli') | |
model = AutoModelForSequenceClassification.from_pretrained('facebook/bart-large-mnli') | |
# Move model to appropriate device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Streamlit app | |
def main(): | |
st.title("Natural Language Inference with BART") | |
# Text input for premise and hypothesis | |
premise = st.text_area("Enter the premise:", value="", height=150) | |
hypothesis = st.text_input("Enter the hypothesis:") | |
if st.button("Analyze"): | |
if premise and hypothesis: | |
# Tokenize and encode the premise and hypothesis | |
inputs = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first').to(device) | |
# Model inference | |
with torch.no_grad(): | |
logits = model(inputs)[0] | |
# Calculate probabilities | |
entail_contradiction_logits = logits[:, [0, 2]] | |
probs = entail_contradiction_logits.softmax(dim=1) | |
prob_label_is_true = probs[:, 1].item() | |
# Display results | |
st.write(f"Probability of Entailment: {prob_label_is_true:.4f}") | |
else: | |
st.error("Please enter both a premise and a hypothesis.") | |
if __name__ == "__main__": | |
main() | |
""" |