Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
import re | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem import WordNetLemmatizer | |
# Download necessary NLTK resources | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
# Initialize the zero-shot classification pipeline | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
# Streamlit interface setup | |
st.title("Resume-based Personality Prediction by Serikov Ayanbek") | |
resume_text = st.text_area("Enter Resume Text Here", height=300) | |
# Load data from Excel | |
data = pd.read_excel("ResponseTest.xlsx") | |
data_open = pd.read_excel("ResponseOpen.xlsx") | |
# Define preprocessing function | |
def preprocess_text(text): | |
text = re.sub(r'\W', ' ', str(text)) | |
text = text.lower() | |
text = re.sub(r'\s+[a-z]\s+', ' ', text) | |
text = re.sub(r'^[a-z]\s+', ' ', text) | |
text = re.sub(r'\s+', ' ', text) | |
stop_words = set(stopwords.words('english')) | |
lemmatizer = WordNetLemmatizer() | |
tokens = text.split() | |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] | |
return ' '.join(tokens) | |
# Prepare the data for prediction | |
data['processed_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text) | |
data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) | |
data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) | |
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] | |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) | |
# Automatic prediction on resume text input | |
if resume_text: | |
processed_resume = preprocess_text(resume_text) | |
resume_prediction = classifier(processed_resume, labels) | |
highest_score_label = resume_prediction['labels'][0] | |
st.write("Predicted Personality for the given resume:", highest_score_label) | |
# Automatic prediction for each row in DataFrame using custom labels | |
def predict_personality(row): | |
custom_labels = [row['MAX1'], row['MAX2'], row['MAX3']] | |
processed_text = row['processed_text'] | |
result = classifier(processed_text, custom_labels) | |
return result['labels'][0] # Assumes the labels are sorted by score, highest first | |
data['Predicted'] = data.apply(predict_personality, axis=1) | |
st.dataframe(data[['True_label', 'MAX1', 'MAX2', 'MAX3', 'Predicted']]) | |
# Separate predictions for Female and Male questions | |
for index, row in data_open.iterrows(): | |
result_f = classifier(row['processed_text_open'], labels) | |
result_m = classifier(row['processed_text_mopen'], labels) | |
data_open.at[index, 'Predicted_F'] = result_f['labels'][0] | |
data_open.at[index, 'Predicted_M'] = result_m['labels'][0] | |
st.dataframe(data_open[['True_label', 'Predicted_F', 'Predicted_M']]) | |