Spaces:
Running
Running
File size: 2,031 Bytes
1b50b66 e27efab 2ee3ecc c05213f 2ee3ecc 1b50b66 e27efab 1b50b66 e27efab 2ee3ecc 1b50b66 e27efab 2ee3ecc e27efab 2ee3ecc e27efab 2ee3ecc e27efab 2ee3ecc e27efab 2ee3ecc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
from transformers import pipeline
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
nltk.download('wordnet')
# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Define the candidate labels according to the Enneagram types
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
# Streamlit interface
st.title("Resume-based Personality Prediction")
resume_text = st.text_area("Enter Resume Text Here", height=300)
# User-defined labels option
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
labels = user_labels.split(',') if user_labels else default_labels
# Prediction confidence threshold
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
if st.button("Predict Personality"):
# Text Preprocessing
def preprocess_text(text):
text = re.sub(r'\W', ' ', str(text))
text = text.lower()
text = re.sub(r'\s+[a-z]\s+', ' ', text)
text = re.sub(r'^[a-z]\s+', ' ', text)
text = re.sub(r'\s+', ' ', text)
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tokens = text.split()
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
return ' '.join(tokens)
processed_text = preprocess_text(resume_text)
# Make prediction
result = classifier(processed_text, labels)
# Display the results
st.write("Predictions (above confidence threshold):")
displayed = False
for label, score in zip(result['labels'], result['scores']):
if score >= confidence_threshold:
st.write(f"{label}: {score*100:.2f}%")
displayed = True
if not displayed:
st.write("No predictions exceed the confidence threshold.")
|