|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
StableDiffusionSAGPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils import slow, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusionSAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionSAGPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
test_cpu_offload = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": ".", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 1.0, |
|
"sag_scale": 1.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_1(self): |
|
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
sag_pipe = sag_pipe.to(torch_device) |
|
sag_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "." |
|
generator = torch.manual_seed(0) |
|
output = sag_pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np" |
|
) |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_2(self): |
|
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") |
|
sag_pipe = sag_pipe.to(torch_device) |
|
sag_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "." |
|
generator = torch.manual_seed(0) |
|
output = sag_pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np" |
|
) |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_2_non_square(self): |
|
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") |
|
sag_pipe = sag_pipe.to(torch_device) |
|
sag_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "." |
|
generator = torch.manual_seed(0) |
|
output = sag_pipe( |
|
[prompt], |
|
width=768, |
|
height=512, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
sag_scale=1.0, |
|
num_inference_steps=20, |
|
output_type="np", |
|
) |
|
|
|
image = output.images |
|
|
|
assert image.shape == (1, 512, 768, 3) |
|
|