|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import time |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
logging, |
|
) |
|
from diffusers.utils import load_numpy, nightly, slow, torch_device |
|
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu |
|
|
|
from ...models.test_models_unet_2d_condition import create_lora_layers |
|
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5643, 0.6017, 0.4799, 0.5267, 0.5584, 0.4641, 0.5159, 0.4963, 0.4791]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_lora(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
|
|
lora_attn_procs = create_lora_layers(sd_pipe.unet) |
|
sd_pipe.unet.set_attn_processor(lora_attn_procs) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0}) |
|
image = output.images |
|
image_slice_1 = image[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5}) |
|
image = output.images |
|
image_slice_2 = image[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice - image_slice_1).max() < 1e-2 |
|
assert np.abs(image_slice - image_slice_2).max() > 1e-2 |
|
|
|
def test_stable_diffusion_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = sd_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=sd_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_negative_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
embeds = [] |
|
for p in [prompt, negative_prompt]: |
|
text_inputs = sd_pipe.tokenizer( |
|
p, |
|
padding="max_length", |
|
max_length=sd_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
embeds.append(sd_pipe.text_encoder(text_inputs)[0]) |
|
|
|
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_ddim_factor_8(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs, height=136, width=136) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 136, 136, 3) |
|
expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_pndm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5094, 0.5674, 0.4667, 0.5125, 0.5696, 0.4674, 0.5277, 0.4964, 0.4945]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_no_safety_checker(self): |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None |
|
) |
|
assert isinstance(pipe, StableDiffusionPipeline) |
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler) |
|
assert pipe.safety_checker is None |
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) |
|
|
|
|
|
assert pipe.safety_checker is None |
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
def test_stable_diffusion_k_lms(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[ |
|
0.47082293033599854, |
|
0.5371589064598083, |
|
0.4562119245529175, |
|
0.5220914483070374, |
|
0.5733777284622192, |
|
0.4795039892196655, |
|
0.5465868711471558, |
|
0.5074326395988464, |
|
0.5042197108268738, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler_ancestral(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[ |
|
0.4707113206386566, |
|
0.5372191071510315, |
|
0.4563021957874298, |
|
0.5220003724098206, |
|
0.5734264850616455, |
|
0.4794946610927582, |
|
0.5463782548904419, |
|
0.5074145197868347, |
|
0.504422664642334, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[ |
|
0.47082313895225525, |
|
0.5371587872505188, |
|
0.4562119245529175, |
|
0.5220913887023926, |
|
0.5733776688575745, |
|
0.47950395941734314, |
|
0.546586811542511, |
|
0.5074326992034912, |
|
0.5042197108268738, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_vae_slicing(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
image_count = 4 |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * image_count |
|
output_1 = sd_pipe(**inputs) |
|
|
|
|
|
sd_pipe.enable_vae_slicing() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * image_count |
|
output_2 = sd_pipe(**inputs) |
|
|
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3 |
|
|
|
def test_stable_diffusion_vae_tiling(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
components["safety_checker"] = None |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
|
|
sd_pipe.enable_vae_tiling() |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1 |
|
|
|
|
|
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] |
|
for shape in shapes: |
|
zeros = torch.zeros(shape).to(device) |
|
sd_pipe.vae.decode(zeros) |
|
|
|
def test_stable_diffusion_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[ |
|
0.5108221173286438, |
|
0.5688379406929016, |
|
0.4685141146183014, |
|
0.5098261833190918, |
|
0.5657756328582764, |
|
0.4631010890007019, |
|
0.5226285457611084, |
|
0.49129390716552734, |
|
0.4899061322212219, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_long_prompt(self): |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
do_classifier_free_guidance = True |
|
negative_prompt = None |
|
num_images_per_prompt = 1 |
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") |
|
|
|
prompt = 25 * "@" |
|
with CaptureLogger(logger) as cap_logger_3: |
|
text_embeddings_3 = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
prompt = 100 * "@" |
|
with CaptureLogger(logger) as cap_logger: |
|
text_embeddings = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
negative_prompt = "Hello" |
|
with CaptureLogger(logger) as cap_logger_2: |
|
text_embeddings_2 = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape |
|
assert text_embeddings.shape[1] == 77 |
|
|
|
assert cap_logger.out == cap_logger_2.out |
|
|
|
assert cap_logger.out.count("@") == 25 |
|
assert cap_logger_3.out == "" |
|
|
|
def test_stable_diffusion_height_width_opt(self): |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "hey" |
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np") |
|
image_shape = output.images[0].shape[:2] |
|
assert image_shape == (64, 64) |
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np") |
|
image_shape = output.images[0].shape[:2] |
|
assert image_shape == (96, 96) |
|
|
|
config = dict(sd_pipe.unet.config) |
|
config["sample_size"] = 96 |
|
sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device) |
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np") |
|
image_shape = output.images[0].shape[:2] |
|
assert image_shape == (192, 192) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_1_1_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_1_4_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_ddim(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_lms(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_dpm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_attention_slicing(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image_sliced = pipe(**inputs).images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
assert mem_bytes < 3.75 * 10**9 |
|
|
|
|
|
pipe.disable_attention_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes > 3.75 * 10**9 |
|
assert np.abs(image_sliced - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_vae_slicing(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
|
|
pipe.enable_vae_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
inputs["prompt"] = [inputs["prompt"]] * 4 |
|
inputs["latents"] = torch.cat([inputs["latents"]] * 4) |
|
image_sliced = pipe(**inputs).images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
assert mem_bytes < 4e9 |
|
|
|
|
|
pipe.disable_vae_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
inputs["prompt"] = [inputs["prompt"]] * 4 |
|
inputs["latents"] = torch.cat([inputs["latents"]] * 4) |
|
image = pipe(**inputs).images |
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes > 4e9 |
|
|
|
assert np.abs(image_sliced - image).max() < 1e-2 |
|
|
|
def test_stable_diffusion_vae_tiling(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.unet = pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.vae = pipe.vae.to(memory_format=torch.channels_last) |
|
|
|
prompt = "a photograph of an astronaut riding a horse" |
|
|
|
|
|
pipe.enable_vae_tiling() |
|
pipe.enable_model_cpu_offload() |
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output_chunked = pipe( |
|
[prompt], |
|
width=1024, |
|
height=1024, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=2, |
|
output_type="numpy", |
|
) |
|
image_chunked = output_chunked.images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
|
|
pipe.disable_vae_tiling() |
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe( |
|
[prompt], |
|
width=1024, |
|
height=1024, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=2, |
|
output_type="numpy", |
|
) |
|
image = output.images |
|
|
|
assert mem_bytes < 1e10 |
|
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-2 |
|
|
|
def test_stable_diffusion_fp16_vs_autocast(self): |
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image_fp16 = pipe(**inputs).images |
|
|
|
with torch.autocast(torch_device): |
|
inputs = self.get_inputs(torch_device) |
|
image_autocast = pipe(**inputs).images |
|
|
|
|
|
diff = np.abs(image_fp16.flatten() - image_autocast.flatten()) |
|
|
|
|
|
assert diff.mean() < 2e-2 |
|
|
|
def test_stable_diffusion_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == inputs["num_inference_steps"] |
|
|
|
def test_stable_diffusion_low_cpu_mem_usage(self): |
|
pipeline_id = "CompVis/stable-diffusion-v1-4" |
|
|
|
start_time = time.time() |
|
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) |
|
pipeline_low_cpu_mem_usage.to(torch_device) |
|
low_cpu_mem_usage_time = time.time() - start_time |
|
|
|
start_time = time.time() |
|
_ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False) |
|
normal_load_time = time.time() - start_time |
|
|
|
assert 2 * low_cpu_mem_usage_time < normal_load_time |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.8 * 10**9 |
|
|
|
def test_stable_diffusion_pipeline_with_model_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
outputs = pipe(**inputs) |
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
|
|
outputs_offloaded = pipe(**inputs) |
|
mem_bytes_offloaded = torch.cuda.max_memory_allocated() |
|
|
|
assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3 |
|
assert mem_bytes_offloaded < mem_bytes |
|
assert mem_bytes_offloaded < 3.5 * 10**9 |
|
for module in pipe.text_encoder, pipe.unet, pipe.vae, pipe.safety_checker: |
|
assert module.device == torch.device("cpu") |
|
|
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_attention_slicing() |
|
_ = pipe(**inputs) |
|
mem_bytes_slicing = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes_slicing < mem_bytes_offloaded |
|
assert mem_bytes_slicing < 3 * 10**9 |
|
|
|
def test_stable_diffusion_textual_inversion(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") |
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") |
|
a111_file_neg = hf_hub_download( |
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" |
|
) |
|
pipe.load_textual_inversion(a111_file) |
|
pipe.load_textual_inversion(a111_file_neg) |
|
pipe.to("cuda") |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1) |
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>" |
|
neg_prompt = "Style-Winter-neg" |
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" |
|
) |
|
|
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 5e-2 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionPipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_1_4_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_1_5_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_ddim(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_lms(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_euler(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_dpm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 25 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|