|
import gradio as gr |
|
import json |
|
import torch |
|
|
|
from tqdm import tqdm |
|
from huggingface_hub import snapshot_download |
|
from models import AudioDiffusion, DDPMScheduler |
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder import AutoencoderKL |
|
from gradio import Markdown |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device_type = "cuda" |
|
device_selection = "cuda:0" |
|
else: |
|
device_type = "cpu" |
|
device_selection = "cpu" |
|
|
|
class Tango: |
|
def __init__(self, name = "declare-lab/tango2", device = device_selection): |
|
|
|
path = snapshot_download(repo_id = name) |
|
|
|
vae_config = json.load(open("{}/vae_config.json".format(path))) |
|
stft_config = json.load(open("{}/stft_config.json".format(path))) |
|
main_config = json.load(open("{}/main_config.json".format(path))) |
|
|
|
self.vae = AutoencoderKL(**vae_config).to(device) |
|
self.stft = TacotronSTFT(**stft_config).to(device) |
|
self.model = AudioDiffusion(**main_config).to(device) |
|
|
|
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device) |
|
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device) |
|
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device) |
|
|
|
self.vae.load_state_dict(vae_weights) |
|
self.stft.load_state_dict(stft_weights) |
|
self.model.load_state_dict(main_weights) |
|
|
|
print ("Successfully loaded checkpoint from:", name) |
|
|
|
self.vae.eval() |
|
self.stft.eval() |
|
self.model.eval() |
|
|
|
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler") |
|
|
|
def chunks(self, lst, n): |
|
""" Yield successive n-sized chunks from a list. """ |
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True): |
|
""" Generate audio for a single prompt string. """ |
|
with torch.no_grad(): |
|
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
return wave[0] |
|
|
|
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True): |
|
""" Generate audio for a list of prompt strings. """ |
|
outputs = [] |
|
for k in tqdm(range(0, len(prompts), batch_size)): |
|
batch = prompts[k: k + batch_size] |
|
with torch.no_grad(): |
|
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
outputs += [item for item in wave] |
|
if samples == 1: |
|
return outputs |
|
return list(self.chunks(outputs, samples)) |
|
|
|
|
|
|
|
tango = Tango(device = "cpu") |
|
tango.vae.to(device_type) |
|
tango.stft.to(device_type) |
|
tango.model.to(device_type) |
|
|
|
def gradio_generate(prompt, steps, guidance): |
|
output_wave = tango.generate(prompt, steps, guidance) |
|
return gr.make_waveform((16000, output_wave)) |
|
|
|
description_text = """ |
|
<p style="text-align: center;"> |
|
<b><big><big><big>Text-to-Audio</big></big></big></b> |
|
<br/>Generates an audio file, freely, without account, without watermark, that you can download. |
|
</p> |
|
<br/> |
|
<br/> |
|
🚀 Powered by <i>Tango 2</i> AI. |
|
<br/> |
|
<ul> |
|
<li>If you need to generate <b>music</b>, I recommend you to use <i>MusicGen</i>,</li> |
|
</ul> |
|
<br/> |
|
🐌 Slow process... Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/> |
|
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> |
|
<br/> |
|
⚖️ You can use, modify and share the generated sounds but not for commercial uses. |
|
""" |
|
|
|
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True) |
|
denoising_steps = gr.Slider(label = "Steps", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True) |
|
guidance_scale = gr.Slider(label = "Guidance Scale", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True) |
|
|
|
output_audio = gr.Audio(label = "Generated Audio") |
|
|
|
|
|
gr_interface = gr.Interface( |
|
fn = gradio_generate, |
|
inputs = [input_text, denoising_steps, guidance_scale], |
|
outputs = [output_audio], |
|
title = "", |
|
description = description_text, |
|
allow_flagging = False, |
|
examples = [ |
|
["Quiet speech and then and airplane flying away"], |
|
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"], |
|
["Ducks quack and water splashes with some animal screeching in the background"], |
|
["Describe the sound of the ocean"], |
|
["A woman and a baby are having a conversation"], |
|
["A man speaks followed by a popping noise and laughter"], |
|
["A cup is filled from a faucet"], |
|
["An audience cheering and clapping"], |
|
["Rolling thunder with lightning strikes"], |
|
["A dog barking and a cat mewing and a racing car passes by"], |
|
["Gentle water stream, birds chirping and sudden gun shot"], |
|
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."], |
|
["A dog barking"], |
|
["A cat meowing"], |
|
["Wooden table tapping sound while water pouring"], |
|
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"], |
|
["two gunshots followed by birds flying away while chirping"], |
|
["Whistling with birds chirping"], |
|
["A person snoring"], |
|
["Motor vehicles are driving with loud engines and a person whistles"], |
|
["People cheering in a stadium while thunder and lightning strikes"], |
|
["A helicopter is in flight"], |
|
["A dog barking and a man talking and a racing car passes by"], |
|
], |
|
cache_examples = "lazy", |
|
) |
|
|
|
|
|
gr_interface.queue(10).launch() |