Spaces:
Runtime error
Runtime error
import cv2 | |
from PIL import Image | |
import torch | |
import matplotlib.pyplot as plt | |
import torch.functional as F | |
import torch.nn as nn | |
import numpy as np | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
# !pip install efficientnet_pytorch -q | |
from efficientnet_pytorch import EfficientNet | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
val_transform = A.Compose( | |
[ | |
A.Resize(height=300, width=300), | |
A.Normalize( | |
mean=[0.3199, 0.2240, 0.1609], | |
std=[0.3020, 0.2183, 0.1741], | |
max_pixel_value=255.0, | |
), | |
ToTensorV2(), | |
] | |
) | |
def transform_image(image_1, image_2, transforms): | |
# img_1 = cv2.cvtColor(cv2.imread(image_path_1), cv2.COLOR_BGR2RGB) | |
img_1 = transforms(image=np.array(image_1))['image'] | |
img_1 = img_1.unsqueeze(0) | |
# img_2 = cv2.cvtColor(cv2.imread(image_path_2), cv2.COLOR_BGR2RGB) | |
img_2 = transforms(image=np.array(image_2))['image'] | |
img_2 = img_2.unsqueeze(0) | |
images = {'img1':img_1,'img2':img_2} | |
return images | |
class BasicConv2d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False): | |
super(BasicConv2d, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,stride=stride,padding=padding,bias=bias) | |
self.norm = nn.BatchNorm2d(out_channels, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
def forward(self,x): | |
x = self.conv1(x) | |
x = self.norm(x) | |
return x | |
class BottleNeck(nn.Module): | |
def __init__(self, prev_channels, in_channels, out_channels, kernel_size=3, stride=2, padding=1, reduce=False): | |
super(BottleNeck, self).__init__() | |
self.reduce = reduce | |
self.ReduceBlock1 = BasicConv2d(prev_channels, in_channels, kernel_size=1, stride=stride, padding=0) | |
self.ReduceBlock2 = BasicConv2d(prev_channels, out_channels, kernel_size=1, stride=stride, padding=0) | |
self.Block1 = BasicConv2d(prev_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.Block2 = BasicConv2d(in_channels, in_channels, kernel_size=kernel_size, stride=1, padding=padding) | |
self.Block3 = BasicConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
out = x | |
if self.reduce: | |
out = self.ReduceBlock1(x) | |
out = self.relu(out) | |
identity = self.ReduceBlock2(x) | |
else: | |
out = self.Block1(out) | |
out = self.relu(out) | |
out = self.Block2(out) | |
out = self.relu(out) | |
out = self.Block3(out) | |
if self.reduce: | |
out = self.relu(out+identity) | |
return out | |
class ConvolutionNeuralNetwork(nn.Module): | |
def __init__(self, num_classes: int=1) -> nn.Module: | |
super(ConvolutionNeuralNetwork, self).__init__() | |
self.conv1 = BasicConv2d(3, 64, 7, 2, 3) | |
self.pool1 = nn.MaxPool2d(kernel_size=3,stride=2) | |
self.ResBlock2a = BottleNeck(64, 64, 256, 3, 1, 1, reduce=True) | |
self.ResBlock2b = BottleNeck(256, 64, 256, 3) | |
self.ResBlock2c = BottleNeck(256, 64, 256, 3) | |
self.avgpool = nn.AdaptiveAvgPool2d((1,1)) | |
self.reg_model = nn.Sequential( | |
nn.BatchNorm1d(256* 2), | |
nn.Linear((256) * 2, 500), | |
nn.BatchNorm1d(500), | |
nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(500, 100), | |
nn.BatchNorm1d(100), | |
nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(100, 2), | |
) | |
def forward(self, images): | |
img = self.conv1(images['img1']) | |
img = self.pool1(img) | |
img = self.ResBlock2a(img) | |
img = self.ResBlock2b(img) | |
img = self.ResBlock2c(img) | |
img = self.avgpool(img) | |
img = torch.flatten(img, 1) | |
img1= self.conv1(images['img2']) | |
img1= self.pool1(img1) | |
img1= self.ResBlock2a(img1) | |
img1= self.ResBlock2b(img1) | |
img1= self.ResBlock2c(img1) | |
img1 = self.avgpool(img1) | |
img1 = torch.flatten(img1, 1) | |
conc = torch.cat((img, img1), dim=1) | |
x = self.reg_model(conc) | |
return x | |
class Efficient(nn.Module): | |
def __init__(self, num_classes:int=1): | |
super(Efficient, self).__init__() | |
self.model = EfficientNet.from_pretrained("efficientnet-b3") | |
num_features = self.model._fc.in_features | |
self.model._fc = nn.Linear(num_features, 256) | |
self.reg_model = nn.Sequential( | |
nn.BatchNorm1d(256* 2), | |
nn.Linear((256) * 2, 500), | |
nn.BatchNorm1d(500), | |
nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(500, 100), | |
nn.BatchNorm1d(100), | |
nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(100, 2), | |
) | |
def forward(self, images): | |
img1 = self.model(images['img1']) | |
img2 = self.model(images['img2']) | |
conc = torch.cat((img1,img2), dim=1) | |
x = self.reg_model(conc) | |
return x | |
class EnsembleModel(nn.Module): | |
def __init__(self, model_cnn, model_eff): | |
super(EnsembleModel, self).__init__() | |
self.model_cnn = model_cnn | |
self.model_eff = model_eff | |
assert model_cnn.reg_model[-1].out_features == model_eff.reg_model[-1].out_features | |
# They both have same num_classes so we dont need to edit any code here for the fully connected layer | |
def forward(self, images): | |
model_cnn_output = self.model_cnn(images) | |
model_res_output = self.model_eff(images) | |
ensemble_output = (model_cnn_output + model_res_output) / 2.0 | |
# ensemble_output = torch.cat((model_cnn_output, model_res_output), dim=1) | |
return ensemble_output | |
def Inf_predict_image(model:nn.Module, images, class_names) -> None: | |
model.eval() | |
# fig, axs = plt.subplots(1, 2, figsize=(15, 10)) | |
for img in images: | |
images[img] = images[img].to(device) | |
predictions = model(images) | |
# Convert MSE floats to integer predictions | |
predictions[predictions < 0.5] = 0 | |
predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1 | |
predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2 | |
predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3 | |
predictions[(predictions >= 3.5) & (predictions < 10000000)] = 4 | |
predictions = predictions.long().squeeze(1) | |
image_1 = images['img1'].squeeze().permute(1, 2, 0).cpu().numpy() | |
image_2 = images['img2'].squeeze().permute(1, 2, 0).cpu().numpy() | |
predicted_label1 = predictions[0][0].item() | |
predicted_label2 = predictions[0][1].item() | |
return class_names[predicted_label1], class_names[predicted_label2] | |
# axs[0].imshow(image_1) | |
# axs[1].imshow(image_2) | |
# axs[0].set_title(f'Predicted: ({class_names[predicted_label1]})') | |
# axs[1].set_title(f'Predicted: ({class_names[predicted_label2]})') | |
# axs[0].axis('off') | |
# axs[1].axis('off') | |
# plt.show() | |