X-ray_Classifier / app_interface.py
Emms's picture
X-RAY BASE
49106b8
raw
history blame
7.36 kB
import torch
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from functools import partial
import Utils.Pneumonia_Utils as PU
import Utils.CT_Scan_Utils as CSU
import Utils.Covid19_Utils as C19U
import Utils.DR_Utils as DRU
# Constants for model paths
CANCER_MODEL_PATH = 'cs_models/EfficientNet_CT_Scans.pth.tar'
DIABETIC_RETINOPATHY_MODEL_PATH = 'cs_models/model_DR_9.pth.tar'
PNEUMONIA_MODEL_PATH = 'cs_models/DenseNet_Pneumonia.pth.tar'
COVID_MODEL_PATH = 'cs_models/DenseNet_Covid.pth.tar'
# Constants for class labels
CANCER_CLASS_LABELS = ['adenocarcinoma','large.cell.carcinoma','normal','squamous.cell.carcinoma']
DIABETIC_RETINOPATHY_CLASS_LABELS = ['No DR','Mild', 'Moderate', 'Severe', 'Proliferative DR']
PNEUMONIA_CLASS_LABELS = ['Normal', 'Pneumonia']
COVID_CLASS_LABELS = ['Normal','Covid19']
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
def cancer_page(image, test_model):
x_ray_image = CSU.transform_image(image, CSU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = CSU.plot_grad_cam(test_model,
x_ray_image,
CANCER_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def covid_page(image, test_model):
x_ray_image = C19U.transform_image(image, C19U.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = C19U.plot_grad_cam(test_model,
x_ray_image,
COVID_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def pneumonia_page(image, test_model):
x_ray_image = PU.transform_image(image, PU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = PU.plot_grad_cam(test_model,
x_ray_image,
PNEUMONIA_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def diabetic_retinopathy_page(image_1, image_2, test_model):
images = DRU.transform_image(image_1, image_2, DRU.val_transform)
pred_label_1, pred_label_2 = DRU.Inf_predict_image(test_model,
images,
DIABETIC_RETINOPATHY_CLASS_LABELS)
return pred_label_1, pred_label_2
if __name__ == "__main__":
CSU_model = CSU.Efficient().to(device)
CSU_model.load_state_dict(torch.load(CANCER_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
CSU_test_model = CSU.ModelGradCam(CSU_model).to(device)
CSU_images_dir = "TESTS/CHEST_CT_SCANS"
all_images = os.listdir(CSU_images_dir)
CSU_examples = [[os.path.join(CSU_images_dir,image)] for image in np.random.choice(all_images, size=4, replace=False)]
C19U_model = C19U.DenseNet().to(device)
C19U_model.load_state_dict(torch.load(COVID_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
C19U_test_model = C19U.ModelGradCam(C19U_model).to(device)
C19U_C19_images_dir = [[os.path.join("TESTS/COVID19",image)] for image in np.random.choice(os.listdir("TESTS/COVID19"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
C19U_examples = C19U_C19_images_dir + NORM_images_dir
PU_model = PU.DenseNet.to(device)
PU_model.load_state_dict(torch.load(PNEUMONIA_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
PU_test_model = PU.ModelGradCam(PU_model).to(device)
PU_images_dir = [[os.path.join("TESTS/PNEUMONIA",image)] for image in np.random.choice(os.listdir("TESTS/PNEUMONIA"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
PU_examples = PU_images_dir + NORM_images_dir
DRU_cnn_model = DRU.ConvolutionNeuralNetwork().to(device)
DRU_eff_b3 = DRU.Efficient().to(device)
DRU_ensemble = DRU.EnsembleModel(DRU_cnn_model, DRU_eff_b3).to(device)
DRU_ensemble.load_state_dict(torch.load(DIABETIC_RETINOPATHY_MODEL_PATH,map_location=torch.device('cpu'))["state_dict"], strict=False)
DRU_test_model = DRU_ensemble
DRU_examples = [['TESTS/DR_1/10030_left._aug_0._aug_6.jpeg','TESTS/DR_0/10031_right._aug_17.jpeg']]
cancer_interface = gr.Interface(
fn=partial(cancer_page,test_model=CSU_test_model),
inputs=gr.Image(type="pil", label="Image"),
outputs=[
gr.Image(type="numpy", label="Heatmap Image"),
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False)
],
examples=CSU_examples,
cache_examples=False,
allow_flagging="never",
title="Chest Cancer Detection System"
)
covid_interface = gr.Interface(
fn=partial(covid_page,test_model=C19U_test_model),
inputs=gr.Image(type="pil", label="Image"),
outputs=[
gr.Image(type="numpy", label="Heatmap Image"),
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False)
],
examples=C19U_examples,
cache_examples=False,
allow_flagging="never",
title="Covid Detection System"
)
pneumonia_interface = gr.Interface(
fn=partial(pneumonia_page,test_model=PU_test_model),
inputs=gr.Image(type="pil", label="Image"),
outputs=[
gr.Image(type="numpy", label="Heatmap Image"),
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False)
],
examples=PU_examples,
cache_examples=False,
allow_flagging="never",
title="Pneumonia Detection System"
)
diabetic_retinopathy_interface = gr.Interface(
fn=partial(diabetic_retinopathy_page,test_model=DRU_test_model),
inputs=[gr.Image(type="pil", label="Image"), gr.Image(type="pil", label="Image")],
outputs=[
gr.Textbox(label="Labels Present"),
gr.Textbox(label="Labels Present")
],
examples=DRU_examples,
cache_examples=False,
allow_flagging="never",
title="Diabetic Retinopathy System"
)
demo = gr.TabbedInterface(
[cancer_interface,
covid_interface,
pneumonia_interface,
diabetic_retinopathy_interface],
["Chest Cancer", "Covid19", "Pneumonia", "Diabetic Retinopathy"])
demo.launch(share=True)