Emms's picture
X-RAY BASE
49106b8
raw
history blame
7.92 kB
import torch
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from functools import partial
import Utils.Pneumonia_Utils as PU
import Utils.CT_Scan_Utils as CSU
import Utils.Covid19_Utils as C19U
import Utils.DR_Utils as DRU
# Constants for model paths
CANCER_MODEL_PATH = 'cs_models/EfficientNet_CT_Scans.pth.tar'
DIABETIC_RETINOPATHY_MODEL_PATH = 'cs_models/model_DR_9.pth.tar'
PNEUMONIA_MODEL_PATH = 'cs_models/DenseNet_Pneumonia.pth.tar'
COVID_MODEL_PATH = 'cs_models/DenseNet_Covid.pth.tar'
# Constants for class labels
CANCER_CLASS_LABELS = ['adenocarcinoma','large.cell.carcinoma','normal','squamous.cell.carcinoma']
DIABETIC_RETINOPATHY_CLASS_LABELS = ['No DR','Mild', 'Moderate', 'Severe', 'Proliferative DR']
PNEUMONIA_CLASS_LABELS = ['Normal', 'Pneumonia']
COVID_CLASS_LABELS = ['Normal','Covid19']
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
def cancer_page(image, test_model):
x_ray_image = CSU.transform_image(image, CSU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = CSU.plot_grad_cam(test_model,
x_ray_image,
CANCER_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def covid_page(image, test_model):
x_ray_image = C19U.transform_image(image, C19U.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = C19U.plot_grad_cam(test_model,
x_ray_image,
COVID_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def pneumonia_page(image, test_model):
x_ray_image = PU.transform_image(image, PU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = PU.plot_grad_cam(test_model,
x_ray_image,
PNEUMONIA_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def diabetic_retinopathy_page(image_1, image_2, test_model):
images = DRU.transform_image(image_1, image_2, DRU.val_transform)
pred_label_1, pred_label_2 = DRU.Inf_predict_image(test_model,
images,
DIABETIC_RETINOPATHY_CLASS_LABELS)
return pred_label_1, pred_label_2
CSU_model = CSU.Efficient().to(device)
CSU_model.load_state_dict(torch.load(CANCER_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
CSU_test_model = CSU.ModelGradCam(CSU_model).to(device)
CSU_images_dir = "TESTS/CHEST_CT_SCANS"
all_images = os.listdir(CSU_images_dir)
CSU_examples = [[os.path.join(CSU_images_dir,image)] for image in np.random.choice(all_images, size=4, replace=False)]
C19U_model = C19U.DenseNet().to(device)
C19U_model.load_state_dict(torch.load(COVID_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
C19U_test_model = C19U.ModelGradCam(C19U_model).to(device)
C19U_C19_images_dir = [[os.path.join("TESTS/COVID19",image)] for image in np.random.choice(os.listdir("TESTS/COVID19"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
C19U_examples = C19U_C19_images_dir + NORM_images_dir
PU_model = PU.DenseNet.to(device)
PU_model.load_state_dict(torch.load(PNEUMONIA_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
PU_test_model = PU.ModelGradCam(PU_model).to(device)
PU_images_dir = [[os.path.join("TESTS/PNEUMONIA",image)] for image in np.random.choice(os.listdir("TESTS/PNEUMONIA"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
PU_examples = PU_images_dir + NORM_images_dir
DRU_cnn_model = DRU.ConvolutionNeuralNetwork().to(device)
DRU_eff_b3 = DRU.Efficient().to(device)
DRU_ensemble = DRU.EnsembleModel(DRU_cnn_model, DRU_eff_b3).to(device)
DRU_ensemble.load_state_dict(torch.load(DIABETIC_RETINOPATHY_MODEL_PATH,map_location=torch.device('cpu'))["state_dict"], strict=False)
DRU_test_model = DRU_ensemble
DRU_examples = [['TESTS/DR_1/10030_left._aug_0._aug_6.jpeg','TESTS/DR_0/10031_right._aug_17.jpeg']]
demo = gr.Blocks(title="X-RAY_CLASSIFIER")
with demo:
gr.Markdown(
""" # WELCOME, Try Out the X-ray_Classifier Below
Try out the following classification models below."""
)
with gr.Tab("Chest Cancer"):
with gr.Row():
cancer_input = gr.Image(type="pil", label="Image")
cancer_output1 = gr.Image(type="numpy", label="Heatmap Image")
cancer_output2 = gr.Textbox(label="Labels Present")
cancer_output3 = gr.Label(label="Probabilities", show_label=False)
cancer_button = gr.Button("Predict")
cancer_examples = gr.Examples(CSU_examples, inputs=[cancer_input])
with gr.Tab("Covid19"):
with gr.Row():
covid_input = gr.Image(type="pil", label="Image")
covid_output1 = gr.Image(type="numpy", label="Heatmap Image")
covid_output2 = gr.Textbox(label="Labels Present")
covid_output3 = gr.Label(label="Probabilities", show_label=False)
covid_button = gr.Button("Predict")
covid_examples = gr.Examples(C19U_examples, inputs=[covid_input])
with gr.Tab("Pneumonia"):
with gr.Row():
pneumonia_input = gr.Image(type="pil", label="Image")
pneumonia_output1 = gr.Image(type="numpy", label="Heatmap Image")
pneumonia_output2 = gr.Textbox(label="Labels Present")
pneumonia_output3 = gr.Label(label="Probabilities", show_label=False)
pneumonia_button = gr.Button("Predict")
pneumonia_examples = gr.Examples(PU_examples, inputs=[pneumonia_input])
with gr.Tab("Diabetic Retinopathy"):
with gr.Row():
dr_input1 = gr.Image(type="pil", label="Image")
dr_input2 = gr.Image(type="pil", label="Image")
dr_output1 = gr.Textbox(label="Labels Present")
dr_output2 = gr.Textbox(label="Labels Present")
dr_button = gr.Button("Predict")
dr_examples = gr.Examples(DRU_examples, inputs=[dr_input1, dr_input2])
cancer_button.click(partial(cancer_page, test_model=CSU_test_model),
inputs=cancer_input,
outputs=[cancer_output1, cancer_output2, cancer_output3])
covid_button.click(partial(covid_page, test_model=C19U_test_model),
inputs=covid_input,
outputs=[covid_output1, covid_output2, covid_output3])
pneumonia_button.click(partial(pneumonia_page, test_model=PU_test_model),
inputs=pneumonia_input,
outputs=[pneumonia_output1, pneumonia_output2, pneumonia_output3])
dr_button.click(partial(diabetic_retinopathy_page,
test_model=DRU_test_model),
inputs=[dr_input1, dr_input2],
outputs=[dr_output1, dr_output2])
if __name__ == "__main__":
demo.launch()