Spaces:
Runtime error
Runtime error
File size: 7,916 Bytes
49106b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import torch
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from functools import partial
import Utils.Pneumonia_Utils as PU
import Utils.CT_Scan_Utils as CSU
import Utils.Covid19_Utils as C19U
import Utils.DR_Utils as DRU
# Constants for model paths
CANCER_MODEL_PATH = 'cs_models/EfficientNet_CT_Scans.pth.tar'
DIABETIC_RETINOPATHY_MODEL_PATH = 'cs_models/model_DR_9.pth.tar'
PNEUMONIA_MODEL_PATH = 'cs_models/DenseNet_Pneumonia.pth.tar'
COVID_MODEL_PATH = 'cs_models/DenseNet_Covid.pth.tar'
# Constants for class labels
CANCER_CLASS_LABELS = ['adenocarcinoma','large.cell.carcinoma','normal','squamous.cell.carcinoma']
DIABETIC_RETINOPATHY_CLASS_LABELS = ['No DR','Mild', 'Moderate', 'Severe', 'Proliferative DR']
PNEUMONIA_CLASS_LABELS = ['Normal', 'Pneumonia']
COVID_CLASS_LABELS = ['Normal','Covid19']
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
def cancer_page(image, test_model):
x_ray_image = CSU.transform_image(image, CSU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = CSU.plot_grad_cam(test_model,
x_ray_image,
CANCER_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def covid_page(image, test_model):
x_ray_image = C19U.transform_image(image, C19U.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = C19U.plot_grad_cam(test_model,
x_ray_image,
COVID_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def pneumonia_page(image, test_model):
x_ray_image = PU.transform_image(image, PU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = PU.plot_grad_cam(test_model,
x_ray_image,
PNEUMONIA_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def diabetic_retinopathy_page(image_1, image_2, test_model):
images = DRU.transform_image(image_1, image_2, DRU.val_transform)
pred_label_1, pred_label_2 = DRU.Inf_predict_image(test_model,
images,
DIABETIC_RETINOPATHY_CLASS_LABELS)
return pred_label_1, pred_label_2
CSU_model = CSU.Efficient().to(device)
CSU_model.load_state_dict(torch.load(CANCER_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
CSU_test_model = CSU.ModelGradCam(CSU_model).to(device)
CSU_images_dir = "TESTS/CHEST_CT_SCANS"
all_images = os.listdir(CSU_images_dir)
CSU_examples = [[os.path.join(CSU_images_dir,image)] for image in np.random.choice(all_images, size=4, replace=False)]
C19U_model = C19U.DenseNet().to(device)
C19U_model.load_state_dict(torch.load(COVID_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
C19U_test_model = C19U.ModelGradCam(C19U_model).to(device)
C19U_C19_images_dir = [[os.path.join("TESTS/COVID19",image)] for image in np.random.choice(os.listdir("TESTS/COVID19"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
C19U_examples = C19U_C19_images_dir + NORM_images_dir
PU_model = PU.DenseNet.to(device)
PU_model.load_state_dict(torch.load(PNEUMONIA_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
PU_test_model = PU.ModelGradCam(PU_model).to(device)
PU_images_dir = [[os.path.join("TESTS/PNEUMONIA",image)] for image in np.random.choice(os.listdir("TESTS/PNEUMONIA"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
PU_examples = PU_images_dir + NORM_images_dir
DRU_cnn_model = DRU.ConvolutionNeuralNetwork().to(device)
DRU_eff_b3 = DRU.Efficient().to(device)
DRU_ensemble = DRU.EnsembleModel(DRU_cnn_model, DRU_eff_b3).to(device)
DRU_ensemble.load_state_dict(torch.load(DIABETIC_RETINOPATHY_MODEL_PATH,map_location=torch.device('cpu'))["state_dict"], strict=False)
DRU_test_model = DRU_ensemble
DRU_examples = [['TESTS/DR_1/10030_left._aug_0._aug_6.jpeg','TESTS/DR_0/10031_right._aug_17.jpeg']]
demo = gr.Blocks(title="X-RAY_CLASSIFIER")
with demo:
gr.Markdown(
""" # WELCOME, Try Out the X-ray_Classifier Below
Try out the following classification models below."""
)
with gr.Tab("Chest Cancer"):
with gr.Row():
cancer_input = gr.Image(type="pil", label="Image")
cancer_output1 = gr.Image(type="numpy", label="Heatmap Image")
cancer_output2 = gr.Textbox(label="Labels Present")
cancer_output3 = gr.Label(label="Probabilities", show_label=False)
cancer_button = gr.Button("Predict")
cancer_examples = gr.Examples(CSU_examples, inputs=[cancer_input])
with gr.Tab("Covid19"):
with gr.Row():
covid_input = gr.Image(type="pil", label="Image")
covid_output1 = gr.Image(type="numpy", label="Heatmap Image")
covid_output2 = gr.Textbox(label="Labels Present")
covid_output3 = gr.Label(label="Probabilities", show_label=False)
covid_button = gr.Button("Predict")
covid_examples = gr.Examples(C19U_examples, inputs=[covid_input])
with gr.Tab("Pneumonia"):
with gr.Row():
pneumonia_input = gr.Image(type="pil", label="Image")
pneumonia_output1 = gr.Image(type="numpy", label="Heatmap Image")
pneumonia_output2 = gr.Textbox(label="Labels Present")
pneumonia_output3 = gr.Label(label="Probabilities", show_label=False)
pneumonia_button = gr.Button("Predict")
pneumonia_examples = gr.Examples(PU_examples, inputs=[pneumonia_input])
with gr.Tab("Diabetic Retinopathy"):
with gr.Row():
dr_input1 = gr.Image(type="pil", label="Image")
dr_input2 = gr.Image(type="pil", label="Image")
dr_output1 = gr.Textbox(label="Labels Present")
dr_output2 = gr.Textbox(label="Labels Present")
dr_button = gr.Button("Predict")
dr_examples = gr.Examples(DRU_examples, inputs=[dr_input1, dr_input2])
cancer_button.click(partial(cancer_page, test_model=CSU_test_model),
inputs=cancer_input,
outputs=[cancer_output1, cancer_output2, cancer_output3])
covid_button.click(partial(covid_page, test_model=C19U_test_model),
inputs=covid_input,
outputs=[covid_output1, covid_output2, covid_output3])
pneumonia_button.click(partial(pneumonia_page, test_model=PU_test_model),
inputs=pneumonia_input,
outputs=[pneumonia_output1, pneumonia_output2, pneumonia_output3])
dr_button.click(partial(diabetic_retinopathy_page,
test_model=DRU_test_model),
inputs=[dr_input1, dr_input2],
outputs=[dr_output1, dr_output2])
if __name__ == "__main__":
demo.launch()
|