File size: 7,916 Bytes
49106b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from functools import partial

import Utils.Pneumonia_Utils as PU
import Utils.CT_Scan_Utils as CSU
import Utils.Covid19_Utils as C19U
import Utils.DR_Utils as DRU

# Constants for model paths
CANCER_MODEL_PATH = 'cs_models/EfficientNet_CT_Scans.pth.tar'
DIABETIC_RETINOPATHY_MODEL_PATH = 'cs_models/model_DR_9.pth.tar'
PNEUMONIA_MODEL_PATH = 'cs_models/DenseNet_Pneumonia.pth.tar'
COVID_MODEL_PATH = 'cs_models/DenseNet_Covid.pth.tar'

# Constants for class labels
CANCER_CLASS_LABELS = ['adenocarcinoma','large.cell.carcinoma','normal','squamous.cell.carcinoma']
DIABETIC_RETINOPATHY_CLASS_LABELS = ['No DR','Mild', 'Moderate', 'Severe', 'Proliferative DR']
PNEUMONIA_CLASS_LABELS = ['Normal', 'Pneumonia']
COVID_CLASS_LABELS = ['Normal','Covid19']

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")


def cancer_page(image, test_model):
    x_ray_image = CSU.transform_image(image, CSU.val_transform)
    x_ray_image = x_ray_image.to(device)
    grad_x_ray_image, pred_label, pred_conf = CSU.plot_grad_cam(test_model, 
                                                                x_ray_image, 
                                                                CANCER_CLASS_LABELS, 
                                                                normalized=True)
    grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
    return grad_x_ray_image, pred_label, pred_conf


def covid_page(image, test_model):
    x_ray_image = C19U.transform_image(image, C19U.val_transform)
    x_ray_image = x_ray_image.to(device)
    grad_x_ray_image, pred_label, pred_conf = C19U.plot_grad_cam(test_model, 
                                                                x_ray_image, 
                                                                COVID_CLASS_LABELS, 
                                                                normalized=True)
    grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
    return grad_x_ray_image, pred_label, pred_conf            


def pneumonia_page(image, test_model):
    x_ray_image = PU.transform_image(image, PU.val_transform)
    x_ray_image = x_ray_image.to(device)
    grad_x_ray_image, pred_label, pred_conf = PU.plot_grad_cam(test_model, 
                                                               x_ray_image, 
                                                               PNEUMONIA_CLASS_LABELS, 
                                                               normalized=True)
    grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
    return grad_x_ray_image, pred_label, pred_conf               

def diabetic_retinopathy_page(image_1, image_2, test_model):
    images = DRU.transform_image(image_1, image_2, DRU.val_transform)
    pred_label_1, pred_label_2 = DRU.Inf_predict_image(test_model, 
                                                        images, 
                                                        DIABETIC_RETINOPATHY_CLASS_LABELS)
    return pred_label_1, pred_label_2        

CSU_model = CSU.Efficient().to(device)
CSU_model.load_state_dict(torch.load(CANCER_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
CSU_test_model = CSU.ModelGradCam(CSU_model).to(device)
CSU_images_dir = "TESTS/CHEST_CT_SCANS"
all_images = os.listdir(CSU_images_dir)
CSU_examples = [[os.path.join(CSU_images_dir,image)] for image in np.random.choice(all_images, size=4, replace=False)]

C19U_model = C19U.DenseNet().to(device)
C19U_model.load_state_dict(torch.load(COVID_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
C19U_test_model = C19U.ModelGradCam(C19U_model).to(device)
C19U_C19_images_dir = [[os.path.join("TESTS/COVID19",image)] for image in np.random.choice(os.listdir("TESTS/COVID19"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
C19U_examples = C19U_C19_images_dir + NORM_images_dir

PU_model = PU.DenseNet.to(device)
PU_model.load_state_dict(torch.load(PNEUMONIA_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
PU_test_model = PU.ModelGradCam(PU_model).to(device)
PU_images_dir = [[os.path.join("TESTS/PNEUMONIA",image)] for image in np.random.choice(os.listdir("TESTS/PNEUMONIA"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
PU_examples = PU_images_dir + NORM_images_dir

DRU_cnn_model = DRU.ConvolutionNeuralNetwork().to(device)
DRU_eff_b3 = DRU.Efficient().to(device)
DRU_ensemble = DRU.EnsembleModel(DRU_cnn_model, DRU_eff_b3).to(device)
DRU_ensemble.load_state_dict(torch.load(DIABETIC_RETINOPATHY_MODEL_PATH,map_location=torch.device('cpu'))["state_dict"], strict=False)
DRU_test_model  = DRU_ensemble
DRU_examples = [['TESTS/DR_1/10030_left._aug_0._aug_6.jpeg','TESTS/DR_0/10031_right._aug_17.jpeg']]

demo = gr.Blocks(title="X-RAY_CLASSIFIER")

with demo:

    gr.Markdown(
        """ # WELCOME, Try Out the X-ray_Classifier Below
        Try out the following classification models below."""
        )
    
    with gr.Tab("Chest Cancer"):
        with gr.Row():
            cancer_input = gr.Image(type="pil", label="Image")
            cancer_output1 = gr.Image(type="numpy", label="Heatmap Image")
        cancer_output2 = gr.Textbox(label="Labels Present")
        cancer_output3 = gr.Label(label="Probabilities", show_label=False)
        cancer_button = gr.Button("Predict")
        cancer_examples = gr.Examples(CSU_examples, inputs=[cancer_input])
        
    with gr.Tab("Covid19"):
        with gr.Row():
            covid_input = gr.Image(type="pil", label="Image")
            covid_output1 = gr.Image(type="numpy", label="Heatmap Image")
        covid_output2 = gr.Textbox(label="Labels Present")
        covid_output3 = gr.Label(label="Probabilities", show_label=False)
        covid_button = gr.Button("Predict")
        covid_examples = gr.Examples(C19U_examples, inputs=[covid_input])

    with gr.Tab("Pneumonia"):
        with gr.Row():
            pneumonia_input = gr.Image(type="pil", label="Image")
            pneumonia_output1 = gr.Image(type="numpy", label="Heatmap Image")
        pneumonia_output2 = gr.Textbox(label="Labels Present")
        pneumonia_output3 = gr.Label(label="Probabilities", show_label=False)
        pneumonia_button = gr.Button("Predict")
        pneumonia_examples = gr.Examples(PU_examples, inputs=[pneumonia_input])

    with gr.Tab("Diabetic Retinopathy"):
        with gr.Row():
            dr_input1 = gr.Image(type="pil", label="Image")
            dr_input2 = gr.Image(type="pil", label="Image")
        dr_output1 = gr.Textbox(label="Labels Present")
        dr_output2 = gr.Textbox(label="Labels Present")
        dr_button = gr.Button("Predict")
        dr_examples = gr.Examples(DRU_examples, inputs=[dr_input1, dr_input2])

    cancer_button.click(partial(cancer_page, test_model=CSU_test_model), 
                        inputs=cancer_input, 
                        outputs=[cancer_output1, cancer_output2, cancer_output3])
    
    covid_button.click(partial(covid_page, test_model=C19U_test_model), 
                       inputs=covid_input, 
                       outputs=[covid_output1, covid_output2, covid_output3])
    
    pneumonia_button.click(partial(pneumonia_page, test_model=PU_test_model), 
                           inputs=pneumonia_input, 
                           outputs=[pneumonia_output1, pneumonia_output2, pneumonia_output3])
    
    dr_button.click(partial(diabetic_retinopathy_page, 
                            test_model=DRU_test_model), 
                            inputs=[dr_input1, dr_input2], 
                            outputs=[dr_output1, dr_output2])


if __name__ == "__main__":

    demo.launch()