File size: 7,222 Bytes
49106b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import cv2
from PIL import Image
import torch
import matplotlib.pyplot as plt
import torch.functional as F
import torch.nn as nn
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
# !pip install efficientnet_pytorch -q
from efficientnet_pytorch import EfficientNet

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

val_transform = A.Compose(
    [
        A.Resize(height=300, width=300),
        A.Normalize(
            mean=[0.3199, 0.2240, 0.1609],
            std=[0.3020, 0.2183, 0.1741],
            max_pixel_value=255.0,
        ),
        ToTensorV2(),
    ]
)

def transform_image(image_1, image_2, transforms):
    # img_1 = cv2.cvtColor(cv2.imread(image_path_1), cv2.COLOR_BGR2RGB)
    img_1 = transforms(image=np.array(image_1))['image']
    img_1 = img_1.unsqueeze(0)
    
    # img_2 = cv2.cvtColor(cv2.imread(image_path_2), cv2.COLOR_BGR2RGB)
    img_2 = transforms(image=np.array(image_2))['image']
    img_2 = img_2.unsqueeze(0)
    images = {'img1':img_1,'img2':img_2}
    return images

class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False):
        super(BasicConv2d, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,stride=stride,padding=padding,bias=bias)
        self.norm = nn.BatchNorm2d(out_channels, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

    def forward(self,x):
        x = self.conv1(x)
        x = self.norm(x)
        return x



class BottleNeck(nn.Module):
    def __init__(self, prev_channels, in_channels, out_channels, kernel_size=3, stride=2, padding=1, reduce=False):
        super(BottleNeck, self).__init__()
        self.reduce = reduce

        self.ReduceBlock1 = BasicConv2d(prev_channels, in_channels, kernel_size=1, stride=stride, padding=0)
        self.ReduceBlock2 = BasicConv2d(prev_channels, out_channels, kernel_size=1, stride=stride, padding=0)

        self.Block1 = BasicConv2d(prev_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.Block2 = BasicConv2d(in_channels, in_channels, kernel_size=kernel_size, stride=1, padding=padding)
        self.Block3 = BasicConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        self.relu = nn.ReLU()

    def forward(self, x):
        out = x
        if self.reduce:
            out = self.ReduceBlock1(x)
            out = self.relu(out)
            identity = self.ReduceBlock2(x)
        else:
            out = self.Block1(out)
            out = self.relu(out)
        out = self.Block2(out)
        out = self.relu(out)
        out = self.Block3(out)
        if self.reduce:
            out = self.relu(out+identity)
        
        return out

class ConvolutionNeuralNetwork(nn.Module):
    def __init__(self, num_classes: int=1) -> nn.Module:
        super(ConvolutionNeuralNetwork, self).__init__()
        self.conv1 = BasicConv2d(3, 64, 7, 2, 3)
        self.pool1 = nn.MaxPool2d(kernel_size=3,stride=2)

        self.ResBlock2a = BottleNeck(64, 64, 256, 3, 1, 1, reduce=True)
        self.ResBlock2b = BottleNeck(256, 64, 256, 3)
        self.ResBlock2c = BottleNeck(256, 64, 256, 3)

        self.avgpool = nn.AdaptiveAvgPool2d((1,1))
        self.reg_model = nn.Sequential(
            nn.BatchNorm1d(256* 2),
            nn.Linear((256) * 2, 500),
            nn.BatchNorm1d(500),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(500, 100),
            nn.BatchNorm1d(100),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(100, 2),
        )
        
    def forward(self, images):
        img = self.conv1(images['img1'])
        img = self.pool1(img)
        img = self.ResBlock2a(img)
        img = self.ResBlock2b(img)
        img = self.ResBlock2c(img)
        img = self.avgpool(img)
        img = torch.flatten(img, 1)
        
        img1= self.conv1(images['img2'])
        img1= self.pool1(img1)
        img1= self.ResBlock2a(img1)
        img1= self.ResBlock2b(img1)
        img1= self.ResBlock2c(img1)
        img1 = self.avgpool(img1)
        img1 = torch.flatten(img1, 1)
        
        conc = torch.cat((img, img1), dim=1)
        x = self.reg_model(conc)
        
        return x


class Efficient(nn.Module):
    def __init__(self, num_classes:int=1):
        super(Efficient, self).__init__()
        self.model = EfficientNet.from_pretrained("efficientnet-b3")
        num_features = self.model._fc.in_features
        self.model._fc = nn.Linear(num_features, 256)
        
        self.reg_model = nn.Sequential(
            nn.BatchNorm1d(256* 2),
            nn.Linear((256) * 2, 500),
            nn.BatchNorm1d(500),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(500, 100),
            nn.BatchNorm1d(100),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(100, 2),
        )

    def forward(self, images):
        img1 = self.model(images['img1'])
        img2 = self.model(images['img2'])
        conc = torch.cat((img1,img2), dim=1)
        x = self.reg_model(conc)
        return x

class EnsembleModel(nn.Module):
    def __init__(self, model_cnn, model_eff):
        super(EnsembleModel, self).__init__()
        self.model_cnn = model_cnn
        self.model_eff = model_eff
        assert model_cnn.reg_model[-1].out_features == model_eff.reg_model[-1].out_features
        # They both have same num_classes so we dont need to edit any code here for the fully connected layer
        
    def forward(self, images):
        model_cnn_output = self.model_cnn(images)
        model_res_output = self.model_eff(images)
        ensemble_output = (model_cnn_output + model_res_output) / 2.0
        # ensemble_output = torch.cat((model_cnn_output, model_res_output), dim=1)
        return ensemble_output
    
def Inf_predict_image(model:nn.Module, images, class_names) -> None:
    model.eval()
    # fig, axs = plt.subplots(1, 2, figsize=(15, 10))

    for img in images:
        images[img] = images[img].to(device)
        
    predictions = model(images)
            
    # Convert MSE floats to integer predictions
    predictions[predictions < 0.5] = 0
    predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1
    predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2
    predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3
    predictions[(predictions >= 3.5) & (predictions < 10000000)] = 4
    predictions = predictions.long().squeeze(1)
    
    image_1 = images['img1'].squeeze().permute(1, 2, 0).cpu().numpy()
    image_2 = images['img2'].squeeze().permute(1, 2, 0).cpu().numpy()
    
    predicted_label1 = predictions[0][0].item()
    predicted_label2 = predictions[0][1].item()

    return class_names[predicted_label1], class_names[predicted_label2]
    # axs[0].imshow(image_1)
    # axs[1].imshow(image_2)
    # axs[0].set_title(f'Predicted: ({class_names[predicted_label1]})')
    # axs[1].set_title(f'Predicted: ({class_names[predicted_label2]})')
    # axs[0].axis('off')
    # axs[1].axis('off')

    # plt.show()