Spaces:
Runtime error
Runtime error
File size: 7,222 Bytes
49106b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import cv2
from PIL import Image
import torch
import matplotlib.pyplot as plt
import torch.functional as F
import torch.nn as nn
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
# !pip install efficientnet_pytorch -q
from efficientnet_pytorch import EfficientNet
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
val_transform = A.Compose(
[
A.Resize(height=300, width=300),
A.Normalize(
mean=[0.3199, 0.2240, 0.1609],
std=[0.3020, 0.2183, 0.1741],
max_pixel_value=255.0,
),
ToTensorV2(),
]
)
def transform_image(image_1, image_2, transforms):
# img_1 = cv2.cvtColor(cv2.imread(image_path_1), cv2.COLOR_BGR2RGB)
img_1 = transforms(image=np.array(image_1))['image']
img_1 = img_1.unsqueeze(0)
# img_2 = cv2.cvtColor(cv2.imread(image_path_2), cv2.COLOR_BGR2RGB)
img_2 = transforms(image=np.array(image_2))['image']
img_2 = img_2.unsqueeze(0)
images = {'img1':img_1,'img2':img_2}
return images
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False):
super(BasicConv2d, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,stride=stride,padding=padding,bias=bias)
self.norm = nn.BatchNorm2d(out_channels, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
def forward(self,x):
x = self.conv1(x)
x = self.norm(x)
return x
class BottleNeck(nn.Module):
def __init__(self, prev_channels, in_channels, out_channels, kernel_size=3, stride=2, padding=1, reduce=False):
super(BottleNeck, self).__init__()
self.reduce = reduce
self.ReduceBlock1 = BasicConv2d(prev_channels, in_channels, kernel_size=1, stride=stride, padding=0)
self.ReduceBlock2 = BasicConv2d(prev_channels, out_channels, kernel_size=1, stride=stride, padding=0)
self.Block1 = BasicConv2d(prev_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.Block2 = BasicConv2d(in_channels, in_channels, kernel_size=kernel_size, stride=1, padding=padding)
self.Block3 = BasicConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU()
def forward(self, x):
out = x
if self.reduce:
out = self.ReduceBlock1(x)
out = self.relu(out)
identity = self.ReduceBlock2(x)
else:
out = self.Block1(out)
out = self.relu(out)
out = self.Block2(out)
out = self.relu(out)
out = self.Block3(out)
if self.reduce:
out = self.relu(out+identity)
return out
class ConvolutionNeuralNetwork(nn.Module):
def __init__(self, num_classes: int=1) -> nn.Module:
super(ConvolutionNeuralNetwork, self).__init__()
self.conv1 = BasicConv2d(3, 64, 7, 2, 3)
self.pool1 = nn.MaxPool2d(kernel_size=3,stride=2)
self.ResBlock2a = BottleNeck(64, 64, 256, 3, 1, 1, reduce=True)
self.ResBlock2b = BottleNeck(256, 64, 256, 3)
self.ResBlock2c = BottleNeck(256, 64, 256, 3)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.reg_model = nn.Sequential(
nn.BatchNorm1d(256* 2),
nn.Linear((256) * 2, 500),
nn.BatchNorm1d(500),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(500, 100),
nn.BatchNorm1d(100),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(100, 2),
)
def forward(self, images):
img = self.conv1(images['img1'])
img = self.pool1(img)
img = self.ResBlock2a(img)
img = self.ResBlock2b(img)
img = self.ResBlock2c(img)
img = self.avgpool(img)
img = torch.flatten(img, 1)
img1= self.conv1(images['img2'])
img1= self.pool1(img1)
img1= self.ResBlock2a(img1)
img1= self.ResBlock2b(img1)
img1= self.ResBlock2c(img1)
img1 = self.avgpool(img1)
img1 = torch.flatten(img1, 1)
conc = torch.cat((img, img1), dim=1)
x = self.reg_model(conc)
return x
class Efficient(nn.Module):
def __init__(self, num_classes:int=1):
super(Efficient, self).__init__()
self.model = EfficientNet.from_pretrained("efficientnet-b3")
num_features = self.model._fc.in_features
self.model._fc = nn.Linear(num_features, 256)
self.reg_model = nn.Sequential(
nn.BatchNorm1d(256* 2),
nn.Linear((256) * 2, 500),
nn.BatchNorm1d(500),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(500, 100),
nn.BatchNorm1d(100),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(100, 2),
)
def forward(self, images):
img1 = self.model(images['img1'])
img2 = self.model(images['img2'])
conc = torch.cat((img1,img2), dim=1)
x = self.reg_model(conc)
return x
class EnsembleModel(nn.Module):
def __init__(self, model_cnn, model_eff):
super(EnsembleModel, self).__init__()
self.model_cnn = model_cnn
self.model_eff = model_eff
assert model_cnn.reg_model[-1].out_features == model_eff.reg_model[-1].out_features
# They both have same num_classes so we dont need to edit any code here for the fully connected layer
def forward(self, images):
model_cnn_output = self.model_cnn(images)
model_res_output = self.model_eff(images)
ensemble_output = (model_cnn_output + model_res_output) / 2.0
# ensemble_output = torch.cat((model_cnn_output, model_res_output), dim=1)
return ensemble_output
def Inf_predict_image(model:nn.Module, images, class_names) -> None:
model.eval()
# fig, axs = plt.subplots(1, 2, figsize=(15, 10))
for img in images:
images[img] = images[img].to(device)
predictions = model(images)
# Convert MSE floats to integer predictions
predictions[predictions < 0.5] = 0
predictions[(predictions >= 0.5) & (predictions < 1.5)] = 1
predictions[(predictions >= 1.5) & (predictions < 2.5)] = 2
predictions[(predictions >= 2.5) & (predictions < 3.5)] = 3
predictions[(predictions >= 3.5) & (predictions < 10000000)] = 4
predictions = predictions.long().squeeze(1)
image_1 = images['img1'].squeeze().permute(1, 2, 0).cpu().numpy()
image_2 = images['img2'].squeeze().permute(1, 2, 0).cpu().numpy()
predicted_label1 = predictions[0][0].item()
predicted_label2 = predictions[0][1].item()
return class_names[predicted_label1], class_names[predicted_label2]
# axs[0].imshow(image_1)
# axs[1].imshow(image_2)
# axs[0].set_title(f'Predicted: ({class_names[predicted_label1]})')
# axs[1].set_title(f'Predicted: ({class_names[predicted_label2]})')
# axs[0].axis('off')
# axs[1].axis('off')
# plt.show()
|