Spaces:
Running
on
T4
Running
on
T4
remove the spaces environment, since we now have a permanent GPU
Browse files
Architectures/ControllabilityGAN/wgan/wgan_qc.py
CHANGED
@@ -246,9 +246,9 @@ class WassersteinGanQuadraticCost(torch.nn.Module):
|
|
246 |
if nograd:
|
247 |
with torch.no_grad():
|
248 |
if isinstance(self.G, torch.nn.parallel.DataParallel):
|
249 |
-
generated_data = self.G.module(latent_samples
|
250 |
else:
|
251 |
-
generated_data = self.G(latent_samples
|
252 |
else:
|
253 |
generated_data = self.G(latent_samples)
|
254 |
self.G.train()
|
|
|
246 |
if nograd:
|
247 |
with torch.no_grad():
|
248 |
if isinstance(self.G, torch.nn.parallel.DataParallel):
|
249 |
+
generated_data = self.G.module(latent_samples, return_intermediate=return_intermediate)
|
250 |
else:
|
251 |
+
generated_data = self.G(latent_samples, return_intermediate=return_intermediate)
|
252 |
else:
|
253 |
generated_data = self.G(latent_samples)
|
254 |
self.G.train()
|
InferenceInterfaces/ToucanTTSInterface.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
import itertools
|
2 |
import os
|
3 |
import warnings
|
4 |
-
from typing import cast
|
5 |
|
6 |
import matplotlib.pyplot as plt
|
7 |
import pyloudnorm
|
8 |
import sounddevice
|
9 |
import soundfile
|
10 |
import torch
|
11 |
-
import spaces
|
12 |
with warnings.catch_warnings():
|
13 |
warnings.simplefilter("ignore")
|
14 |
from speechbrain.pretrained import EncoderClassifier
|
@@ -127,7 +125,6 @@ class ToucanTTSInterface(torch.nn.Module):
|
|
127 |
|
128 |
self.lang_id = get_language_id(lang_id).to(self.device)
|
129 |
|
130 |
-
@spaces.GPU
|
131 |
def forward(self,
|
132 |
text,
|
133 |
view=False,
|
@@ -153,19 +150,15 @@ class ToucanTTSInterface(torch.nn.Module):
|
|
153 |
1.0 means no scaling happens, higher values increase variance of the energy curve,
|
154 |
lower values decrease variance of the energy curve.
|
155 |
"""
|
156 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
157 |
-
self.device = device
|
158 |
-
self.to(device)
|
159 |
-
|
160 |
with torch.inference_mode():
|
161 |
phones = self.text2phone.string_to_tensor(text, input_phonemes=input_is_phones).to(torch.device(self.device))
|
162 |
mel, durations, pitch, energy = self.phone2mel(phones,
|
163 |
return_duration_pitch_energy=True,
|
164 |
-
utterance_embedding=self.default_utterance_embedding.to(device),
|
165 |
durations=durations,
|
166 |
pitch=pitch,
|
167 |
energy=energy,
|
168 |
-
lang_id=self.lang_id.to(device),
|
169 |
duration_scaling_factor=duration_scaling_factor,
|
170 |
pitch_variance_scale=pitch_variance_scale,
|
171 |
energy_variance_scale=energy_variance_scale,
|
@@ -228,8 +221,7 @@ class ToucanTTSInterface(torch.nn.Module):
|
|
228 |
if return_plot_as_filepath:
|
229 |
plt.savefig("tmp.png")
|
230 |
return wave, sr, "tmp.png"
|
231 |
-
|
232 |
-
self.device="cpu"
|
233 |
return wave, sr
|
234 |
|
235 |
def read_to_file(self,
|
|
|
1 |
import itertools
|
2 |
import os
|
3 |
import warnings
|
|
|
4 |
|
5 |
import matplotlib.pyplot as plt
|
6 |
import pyloudnorm
|
7 |
import sounddevice
|
8 |
import soundfile
|
9 |
import torch
|
|
|
10 |
with warnings.catch_warnings():
|
11 |
warnings.simplefilter("ignore")
|
12 |
from speechbrain.pretrained import EncoderClassifier
|
|
|
125 |
|
126 |
self.lang_id = get_language_id(lang_id).to(self.device)
|
127 |
|
|
|
128 |
def forward(self,
|
129 |
text,
|
130 |
view=False,
|
|
|
150 |
1.0 means no scaling happens, higher values increase variance of the energy curve,
|
151 |
lower values decrease variance of the energy curve.
|
152 |
"""
|
|
|
|
|
|
|
|
|
153 |
with torch.inference_mode():
|
154 |
phones = self.text2phone.string_to_tensor(text, input_phonemes=input_is_phones).to(torch.device(self.device))
|
155 |
mel, durations, pitch, energy = self.phone2mel(phones,
|
156 |
return_duration_pitch_energy=True,
|
157 |
+
utterance_embedding=self.default_utterance_embedding.to(self.device),
|
158 |
durations=durations,
|
159 |
pitch=pitch,
|
160 |
energy=energy,
|
161 |
+
lang_id=self.lang_id.to(self.device),
|
162 |
duration_scaling_factor=duration_scaling_factor,
|
163 |
pitch_variance_scale=pitch_variance_scale,
|
164 |
energy_variance_scale=energy_variance_scale,
|
|
|
221 |
if return_plot_as_filepath:
|
222 |
plt.savefig("tmp.png")
|
223 |
return wave, sr, "tmp.png"
|
224 |
+
|
|
|
225 |
return wave, sr
|
226 |
|
227 |
def read_to_file(self,
|
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import os
|
2 |
|
3 |
-
import spaces
|
4 |
-
|
5 |
from run_model_downloader import download_models
|
6 |
|
7 |
if not os.path.exists("Models/ToucanTTS_Meta/best.pt"):
|
@@ -23,17 +21,12 @@ class ControllableInterface(torch.nn.Module):
|
|
23 |
|
24 |
def __init__(self, available_artificial_voices=1000):
|
25 |
super().__init__()
|
26 |
-
self.model = ToucanTTSInterface(device="
|
27 |
-
self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device="
|
28 |
self.generated_speaker_embeds = list()
|
29 |
self.available_artificial_voices = available_artificial_voices
|
30 |
self.current_language = ""
|
31 |
self.current_accent = ""
|
32 |
-
self.device = "cpu"
|
33 |
-
self.model.to("cpu")
|
34 |
-
self.model.device = "cpu"
|
35 |
-
self.wgan.to("cpu")
|
36 |
-
self.wgan.device = "cpu"
|
37 |
|
38 |
def read(self,
|
39 |
prompt,
|
|
|
1 |
import os
|
2 |
|
|
|
|
|
3 |
from run_model_downloader import download_models
|
4 |
|
5 |
if not os.path.exists("Models/ToucanTTS_Meta/best.pt"):
|
|
|
21 |
|
22 |
def __init__(self, available_artificial_voices=1000):
|
23 |
super().__init__()
|
24 |
+
self.model = ToucanTTSInterface(device="cuda", tts_model_path="Meta", language="eng")
|
25 |
+
self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device="cuda")
|
26 |
self.generated_speaker_embeds = list()
|
27 |
self.available_artificial_voices = available_artificial_voices
|
28 |
self.current_language = ""
|
29 |
self.current_accent = ""
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def read(self,
|
32 |
prompt,
|