Spaces:
Running
on
T4
Running
on
T4
# Copyright 2019 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
# Adapted by Florian Lux 2021 | |
""" | |
Layer modules for FFT block in FastSpeech (Feed-forward Transformer). | |
""" | |
import torch | |
class MultiLayeredConv1d(torch.nn.Module): | |
""" | |
Multi-layered conv1d for Transformer block. | |
This is a module of multi-layered conv1d designed | |
to replace positionwise feed-forward network | |
in Transformer block, which is introduced in | |
`FastSpeech: Fast, Robust and Controllable Text to Speech`_. | |
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: | |
https://arxiv.org/pdf/1905.09263.pdf | |
""" | |
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): | |
""" | |
Initialize MultiLayeredConv1d module. | |
Args: | |
in_chans (int): Number of input channels. | |
hidden_chans (int): Number of hidden channels. | |
kernel_size (int): Kernel size of conv1d. | |
dropout_rate (float): Dropout rate. | |
""" | |
super(MultiLayeredConv1d, self).__init__() | |
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) | |
self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
def forward(self, x): | |
""" | |
Calculate forward propagation. | |
Args: | |
x (torch.Tensor): Batch of input tensors (B, T, in_chans). | |
Returns: | |
torch.Tensor: Batch of output tensors (B, T, hidden_chans). | |
""" | |
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) | |
class Conv1dLinear(torch.nn.Module): | |
""" | |
Conv1D + Linear for Transformer block. | |
A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. | |
""" | |
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): | |
""" | |
Initialize Conv1dLinear module. | |
Args: | |
in_chans (int): Number of input channels. | |
hidden_chans (int): Number of hidden channels. | |
kernel_size (int): Kernel size of conv1d. | |
dropout_rate (float): Dropout rate. | |
""" | |
super(Conv1dLinear, self).__init__() | |
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) | |
self.w_2 = torch.nn.Linear(hidden_chans, in_chans) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
def forward(self, x): | |
""" | |
Calculate forward propagation. | |
Args: | |
x (torch.Tensor): Batch of input tensors (B, T, in_chans). | |
Returns: | |
torch.Tensor: Batch of output tensors (B, T, hidden_chans). | |
""" | |
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
return self.w_2(self.dropout(x)) | |