Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import torch.cuda | |
from huggingface_hub import hf_hub_download | |
from InferenceInterfaces.ControllableInterface import ControllableInterface | |
from Utility.utils import float2pcm | |
from Utility.utils import load_json_from_path | |
class TTSWebUI: | |
def __init__(self, | |
gpu_id="cpu", | |
title="Controllable Text-to-Speech for over 7000 Languages", | |
article="The biggest thank you to Hugging Face🤗 for sponsoring the GPU for this space! <br> To get the code, models, additional features, and more information, check out our toolkit: https://github.com/DigitalPhonetics/IMS-Toucan <br>", | |
tts_model_path=None, | |
vocoder_model_path=None, | |
embedding_gan_path=None, | |
available_artificial_voices=10 # be careful with this, if you want too many, it might lead to an endless loop | |
): | |
path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_fullname.json") | |
iso_to_name = load_json_from_path(path_to_iso_list) | |
text_selection = [f"{iso_to_name[iso_code]} ({iso_code})" for iso_code in iso_to_name] | |
# accent_selection = [f"{iso_to_name[iso_code]} Accent ({iso_code})" for iso_code in iso_to_name] | |
self.controllable_ui = ControllableInterface(gpu_id=gpu_id, | |
available_artificial_voices=available_artificial_voices, | |
tts_model_path=tts_model_path, | |
vocoder_model_path=vocoder_model_path, | |
embedding_gan_path=embedding_gan_path) | |
self.iface = gr.Interface(fn=self.read, | |
inputs=[gr.Textbox(lines=2, | |
placeholder="write what you want the synthesis to read here...", | |
value="What I cannot create, I do not understand.", | |
label="Text input"), | |
gr.Dropdown(text_selection, | |
type="value", | |
value='English (eng)', | |
label="Select the Language of the Text (type on your keyboard to find it quickly)"), | |
gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.5, label="Prosody Creativity"), | |
gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Faster - Slower"), | |
gr.Slider(minimum=0, maximum=available_artificial_voices, step=1, value=5, label="Random Seed for the artificial Voice"), | |
gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Gender of artificial Voice"), | |
gr.Audio(type="filepath", show_label=True, container=True, label="[OPTIONAL] Voice to Clone (if left empty, will use an artificial voice instead)"), | |
# gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"), | |
# gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"), | |
# gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth") | |
], | |
outputs=[gr.Audio(type="numpy", label="Speech"), | |
gr.Image(label="Visualization")], | |
title=title, | |
allow_flagging="never", | |
description=article, | |
theme=gr.themes.Ocean(primary_hue="amber", secondary_hue="orange")) | |
self.iface.launch() | |
def read(self, | |
prompt, | |
language, | |
prosody_creativity, | |
duration_scaling_factor, | |
voice_seed, | |
emb1, | |
reference_audio, | |
# pitch_variance_scale, | |
# energy_variance_scale, | |
# emb2 | |
): | |
sr, wav, fig = self.controllable_ui.read(prompt, | |
reference_audio, | |
language.split(" ")[-1].split("(")[1].split(")")[0], | |
language.split(" ")[-1].split("(")[1].split(")")[0], | |
voice_seed, | |
prosody_creativity, | |
duration_scaling_factor, | |
1., | |
1.0, | |
1.0, | |
emb1, | |
0., | |
0., | |
0., | |
0., | |
0., | |
-24.) | |
return (sr, float2pcm(wav)), fig | |
if __name__ == '__main__': | |
TTSWebUI(gpu_id="cuda" if torch.cuda.is_available() else "cpu") | |