Spaces:
Running
on
T4
Running
on
T4
# Copyright 2019 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
# Adapted by Florian Lux 2023 | |
from abc import ABC | |
import torch | |
from Architectures.GeneralLayers.ConditionalLayerNorm import AdaIN1d | |
from Architectures.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm | |
from Architectures.GeneralLayers.LayerNorm import LayerNorm | |
from Utility.utils import integrate_with_utt_embed | |
class VariancePredictor(torch.nn.Module, ABC): | |
""" | |
Variance predictor module. | |
This is a module of variance predictor described in `FastSpeech 2: | |
Fast and High-Quality End-to-End Text to Speech`_. | |
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`: | |
https://arxiv.org/abs/2006.04558 | |
""" | |
def __init__(self, | |
idim, | |
n_layers=2, | |
n_chans=384, | |
kernel_size=3, | |
bias=True, | |
dropout_rate=0.5, | |
utt_embed_dim=None, | |
embedding_integration="AdaIN"): | |
""" | |
Initialize duration predictor module. | |
Args: | |
idim (int): Input dimension. | |
n_layers (int, optional): Number of convolutional layers. | |
n_chans (int, optional): Number of channels of convolutional layers. | |
kernel_size (int, optional): Kernel size of convolutional layers. | |
dropout_rate (float, optional): Dropout rate. | |
""" | |
super().__init__() | |
self.conv = torch.nn.ModuleList() | |
self.dropouts = torch.nn.ModuleList() | |
self.norms = torch.nn.ModuleList() | |
self.embedding_projections = torch.nn.ModuleList() | |
self.utt_embed_dim = utt_embed_dim | |
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] | |
for idx in range(n_layers): | |
if utt_embed_dim is not None: | |
if embedding_integration == "AdaIN": | |
self.embedding_projections += [AdaIN1d(style_dim=utt_embed_dim, num_features=idim)] | |
elif embedding_integration == "ConditionalLayerNorm": | |
self.embedding_projections += [ConditionalLayerNorm(speaker_embedding_dim=utt_embed_dim, hidden_dim=idim)] | |
else: | |
self.embedding_projections += [torch.nn.Linear(utt_embed_dim + idim, idim)] | |
else: | |
self.embedding_projections += [lambda x: x] | |
in_chans = idim if idx == 0 else n_chans | |
self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias, ), | |
torch.nn.ReLU())] | |
self.norms += [LayerNorm(n_chans, dim=1)] | |
self.dropouts += [torch.nn.Dropout(dropout_rate)] | |
self.linear = torch.nn.Linear(n_chans, 1) | |
def forward(self, xs, padding_mask=None, utt_embed=None): | |
""" | |
Calculate forward propagation. | |
Args: | |
xs (Tensor): Batch of input sequences (B, Tmax, idim). | |
padding_mask (ByteTensor, optional): | |
Batch of masks indicating padded part (B, Tmax). | |
Returns: | |
Tensor: Batch of predicted sequences (B, Tmax, 1). | |
""" | |
xs = xs.transpose(1, -1) # (B, idim, Tmax) | |
for f, c, d, p in zip(self.conv, self.norms, self.dropouts, self.embedding_projections): | |
xs = f(xs) # (B, C, Tmax) | |
if self.utt_embed_dim is not None: | |
xs = integrate_with_utt_embed(hs=xs.transpose(1, 2), utt_embeddings=utt_embed, projection=p, embedding_training=self.use_conditional_layernorm_embedding_integration).transpose(1, 2) | |
xs = c(xs) | |
xs = d(xs) | |
xs = self.linear(xs.transpose(1, 2)) # (B, Tmax, 1) | |
if padding_mask is not None: | |
xs = xs.masked_fill(padding_mask, 0.0) | |
return xs | |