Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
6.64 kB
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
# Adapted by Florian Lux 2021
import torch
from Architectures.GeneralLayers.ConditionalLayerNorm import AdaIN1d
from Architectures.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm
from Architectures.GeneralLayers.LayerNorm import LayerNorm
from Utility.utils import integrate_with_utt_embed
class DurationPredictor(torch.nn.Module):
"""
Duration predictor module.
This is a module of duration predictor described
in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
The duration predictor predicts a duration of each frame in log domain
from the hidden embeddings of encoder.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
Note:
The calculation domain of outputs is different
between in `forward` and in `inference`. In `forward`,
the outputs are calculated in log domain but in `inference`,
those are calculated in linear domain.
"""
def __init__(self, idim,
n_layers=2,
n_chans=384,
kernel_size=3,
dropout_rate=0.1,
offset=1.0,
utt_embed_dim=None,
embedding_integration="AdaIN"):
"""
Initialize duration predictor module.
Args:
idim (int): Input dimension.
n_layers (int, optional): Number of convolutional layers.
n_chans (int, optional): Number of channels of convolutional layers.
kernel_size (int, optional): Kernel size of convolutional layers.
dropout_rate (float, optional): Dropout rate.
offset (float, optional): Offset value to avoid nan in log domain.
"""
super(DurationPredictor, self).__init__()
self.offset = offset
self.conv = torch.nn.ModuleList()
self.dropouts = torch.nn.ModuleList()
self.norms = torch.nn.ModuleList()
self.embedding_projections = torch.nn.ModuleList()
self.utt_embed_dim = utt_embed_dim
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"]
for idx in range(n_layers):
if utt_embed_dim is not None:
if embedding_integration == "AdaIN":
self.embedding_projections += [AdaIN1d(style_dim=utt_embed_dim, num_features=idim)]
elif embedding_integration == "ConditionalLayerNorm":
self.embedding_projections += [ConditionalLayerNorm(speaker_embedding_dim=utt_embed_dim, hidden_dim=idim)]
else:
self.embedding_projections += [torch.nn.Linear(utt_embed_dim + idim, idim)]
else:
self.embedding_projections += [lambda x: x]
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ),
torch.nn.ReLU())]
self.norms += [LayerNorm(n_chans, dim=1)]
self.dropouts += [torch.nn.Dropout(dropout_rate)]
self.linear = torch.nn.Linear(n_chans, 1)
def _forward(self, xs, x_masks=None, is_inference=False, utt_embed=None):
xs = xs.transpose(1, -1) # (B, idim, Tmax)
for f, c, d, p in zip(self.conv, self.norms, self.dropouts, self.embedding_projections):
xs = f(xs) # (B, C, Tmax)
if self.utt_embed_dim is not None:
xs = integrate_with_utt_embed(hs=xs.transpose(1, 2), utt_embeddings=utt_embed, projection=p, embedding_training=self.use_conditional_layernorm_embedding_integration).transpose(1, 2)
xs = c(xs)
xs = d(xs)
# NOTE: targets are transformed to log domain in the loss calculation, so this will learn to predict in the log space, which makes the value range easier to handle.
xs = self.linear(xs.transpose(1, -1)).squeeze(-1) # (B, Tmax)
if is_inference:
# NOTE: since we learned to predict in the log domain, we have to invert the log during inference.
xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value
else:
xs = xs.masked_fill(x_masks, 0.0)
return xs
def forward(self, xs, padding_mask=None, utt_embed=None):
"""
Calculate forward propagation.
Args:
xs (Tensor): Batch of input sequences (B, Tmax, idim).
padding_mask (ByteTensor, optional):
Batch of masks indicating padded part (B, Tmax).
Returns:
Tensor: Batch of predicted durations in log domain (B, Tmax).
"""
return self._forward(xs, padding_mask, False, utt_embed=utt_embed)
def inference(self, xs, padding_mask=None, utt_embed=None):
"""
Inference duration.
Args:
xs (Tensor): Batch of input sequences (B, Tmax, idim).
padding_mask (ByteTensor, optional):
Batch of masks indicating padded part (B, Tmax).
Returns:
LongTensor: Batch of predicted durations in linear domain (B, Tmax).
"""
return self._forward(xs, padding_mask, True, utt_embed=utt_embed)
class DurationPredictorLoss(torch.nn.Module):
"""
Loss function module for duration predictor.
The loss value is Calculated in log domain to make it Gaussian.
"""
def __init__(self, offset=1.0, reduction="mean"):
"""
Args:
offset (float, optional): Offset value to avoid nan in log domain.
reduction (str): Reduction type in loss calculation.
"""
super(DurationPredictorLoss, self).__init__()
self.criterion = torch.nn.MSELoss(reduction=reduction)
self.offset = offset
def forward(self, outputs, targets):
"""
Calculate forward propagation.
Args:
outputs (Tensor): Batch of prediction durations in log domain (B, T)
targets (LongTensor): Batch of groundtruth durations in linear domain (B, T)
Returns:
Tensor: Mean squared error loss value.
Note:
`outputs` is in log domain but `targets` is in linear domain.
"""
# NOTE: outputs is in log domain while targets in linear
targets = torch.log(targets.float() + self.offset)
loss = self.criterion(outputs, targets)
return loss