Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
5.37 kB
"""
MIT Licensed Code
Copyright (c) 2022 Aaron (Yinghao) Li
https://github.com/yl4579/StyleTTS/blob/main/models.py
"""
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.utils import spectral_norm
class StyleEncoder(nn.Module):
def __init__(self, dim_in=128, style_dim=64, max_conv_dim=384):
super().__init__()
blocks = []
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
repeat_num = 4
for _ in range(repeat_num):
dim_out = min(dim_in * 2, max_conv_dim)
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
dim_in = dim_out
blocks += [nn.LeakyReLU(0.2)]
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
blocks += [nn.AdaptiveAvgPool2d(1)]
blocks += [nn.LeakyReLU(0.2)]
self.shared = nn.Sequential(*blocks)
self.unshared = nn.Linear(dim_out, style_dim)
def forward(self, speech):
h = self.shared(speech.unsqueeze(1))
h = h.view(h.size(0), -1)
s = self.unshared(h)
return s
class ResBlk(nn.Module):
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
normalize=False, downsample='none'):
super().__init__()
self.actv = actv
self.normalize = normalize
self.downsample = DownSample(downsample)
self.downsample_res = LearnedDownSample(downsample, dim_in)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out)
def _build_weights(self, dim_in, dim_out):
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
if self.normalize:
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
if self.learned_sc:
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
if self.learned_sc:
x = self.conv1x1(x)
if self.downsample:
x = self.downsample(x)
return x
def _residual(self, x):
if self.normalize:
x = self.norm1(x)
x = self.actv(x)
x = self.conv1(x)
x = self.downsample_res(x)
if self.normalize:
x = self.norm2(x)
x = self.actv(x)
x = self.conv2(x)
return x
def forward(self, x):
x = self._shortcut(x) + self._residual(x)
return x / math.sqrt(2) # unit variance
class LearnedDownSample(nn.Module):
def __init__(self, layer_type, dim_in):
super().__init__()
self.layer_type = layer_type
if self.layer_type == 'none':
self.conv = nn.Identity()
elif self.layer_type == 'timepreserve':
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
elif self.layer_type == 'half':
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
else:
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
def forward(self, x):
return self.conv(x)
class LearnedUpSample(nn.Module):
def __init__(self, layer_type, dim_in):
super().__init__()
self.layer_type = layer_type
if self.layer_type == 'none':
self.conv = nn.Identity()
elif self.layer_type == 'timepreserve':
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
elif self.layer_type == 'half':
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
else:
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
def forward(self, x):
return self.conv(x)
class DownSample(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
elif self.layer_type == 'timepreserve':
return F.avg_pool2d(x, (2, 1))
elif self.layer_type == 'half':
if x.shape[-1] % 2 != 0:
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
return F.avg_pool2d(x, 2)
else:
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
class UpSample(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
elif self.layer_type == 'timepreserve':
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
elif self.layer_type == 'half':
return F.interpolate(x, scale_factor=2, mode='nearest')
else:
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)