MassivelyMultilingualTTS / Utility /path_to_transcript_dicts.py
Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
89.9 kB
import glob
import os
import random
import torch
# HELPER FUNCTIONS
def split_dictionary_into_chunks(input_dict, split_n):
res = []
new_dict = {}
elements_per_dict = (len(input_dict.keys()) // split_n) + 1
for k, v in input_dict.items():
if len(new_dict) < elements_per_dict:
new_dict[k] = v
else:
res.append(new_dict)
new_dict = {k: v}
res.append(new_dict)
return res
def limit_to_n(path_to_transcript_dict, n=40000):
# deprecated, we now just use the whole thing always, because there's a critical mass of data
limited_dict = dict()
if len(path_to_transcript_dict.keys()) > n:
for key in random.sample(list(path_to_transcript_dict.keys()), n):
limited_dict[key] = path_to_transcript_dict[key]
return limited_dict
else:
return path_to_transcript_dict
def build_path_to_transcript_dict_multi_ling_librispeech_template(root):
"""
https://arxiv.org/abs/2012.03411
"""
path_to_transcript = dict()
with open(os.path.join(root, "transcripts.txt"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
fields = line.split("\t")
wav_folders = fields[0].split("_")
wav_path = f"{root}/audio/{wav_folders[0]}/{wav_folders[1]}/{fields[0]}.flac"
path_to_transcript[wav_path] = fields[1]
return path_to_transcript
def build_path_to_transcript_dict_hui_template(root):
"""
https://arxiv.org/abs/2106.06309
"""
path_to_transcript = dict()
for el in os.listdir(root):
if os.path.isdir(os.path.join(root, el)):
with open(os.path.join(root, el, "metadata.csv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("|")[1]
wav_path = os.path.join(root, el, "wavs", line.split("|")[0] + ".wav")
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript
return path_to_transcript
# ENGLISH
def build_path_to_transcript_dict_mls_english(re_cache=False):
lang = "english"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train/pttd_cache.pt"
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_gigaspeech(re_cache=False):
root = "/mount/resources/speech/corpora/GigaSpeech/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "transcripts_only_clean_samples.txt"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
fields = line.split("\t")
norm_transcript = fields[1]
wav_path = fields[0]
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_elizabeth(re_cache=False):
root = "/mount/resources/speech/corpora/MAILabs_british_single_speaker_elizabeth"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
for el in os.listdir(root):
if os.path.isdir(os.path.join(root, el)):
with open(os.path.join(root, el, "metadata.csv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("|")[2]
wav_path = os.path.join(root, el, "wavs", line.split("|")[0] + ".wav")
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_nancy(re_cache=False):
root = "/mount/resources/speech/corpora/NancyKrebs"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "metadata.csv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("|")[1]
wav_path = os.path.join(root, "wav", line.split("|")[0] + ".wav")
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_integration_test(re_cache=True):
root = "/mount/resources/speech/corpora/NancyKrebs"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "metadata.csv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n")[:500]:
if line.strip() != "":
norm_transcript = line.split("|")[1]
wav_path = os.path.join(root, "wav", line.split("|")[0] + ".wav")
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_CREMA_D(re_cache=False):
root = "/mount/resources/speech/corpora/CREMA_D/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
identifier_to_sent = {"IEO": "It's eleven o'clock.",
"TIE": "That is exactly what happened.",
"IOM": "I'm on my way to the meeting.",
"IWW": "I wonder what this is about.",
"TAI": "The airplane is almost full.",
"MTI": "Maybe tomorrow it will be cold.",
"IWL": "I would like a new alarm clock.",
"ITH": "I think, I have a doctor's appointment.",
"DFA": "Don't forget a jacket.",
"ITS": "I think, I've seen this before.",
"TSI": "The surface is slick.",
"WSI": "We'll stop in a couple of minutes."}
path_to_transcript = dict()
for file in os.listdir(root):
if file.endswith(".wav"):
path_to_transcript[root + file] = identifier_to_sent[file.split("_")[1]]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_EmoV_DB(re_cache=False):
root = "/mount/resources/speech/corpora/EmoV_DB/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "labels.txt"), "r", encoding="utf8") as file:
lookup = file.read()
identifier_to_sent = dict()
for line in lookup.split("\n"):
if line.strip() != "":
identifier_to_sent[line.split()[0]] = " ".join(line.split()[1:])
for file in os.listdir(root):
if file.endswith(".wav"):
path_to_transcript[root + file] = identifier_to_sent[file[-14:-10]]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_ryanspeech(re_cache=False):
root = "/mount/resources/speech/corpora/RyanSpeech"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript_dict = dict()
with open(root + "/metadata.csv", mode="r", encoding="utf8") as f:
transcripts = f.read().split("\n")
for transcript in transcripts:
if transcript.strip() != "":
parsed_line = transcript.split("|")
audio_file = f"{root}/wavs/{parsed_line[0]}.wav"
path_to_transcript_dict[audio_file] = parsed_line[2]
torch.save(path_to_transcript_dict, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_RAVDESS(re_cache=False):
root = "/mount/resources/speech/corpora/RAVDESS"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript_dict = dict()
for speaker_dir in os.listdir(root):
for audio_file in os.listdir(os.path.join(root, speaker_dir)):
if audio_file.split("-")[4] == "01":
path_to_transcript_dict[os.path.join(root, speaker_dir, audio_file)] = "Kids are talking by the door."
else:
path_to_transcript_dict[os.path.join(root, speaker_dir, audio_file)] = "Dogs are sitting by the door."
torch.save(path_to_transcript_dict, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_ESDS(re_cache=False):
root = "/mount/resources/speech/corpora/Emotional_Speech_Dataset_Singapore"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript_dict = dict()
for speaker_dir in os.listdir(root):
if speaker_dir.startswith("00"):
if int(speaker_dir) > 10:
with open(f"{root}/{speaker_dir}/fixed_unicode.txt", mode="r", encoding="utf8") as f:
transcripts = f.read()
for line in transcripts.replace("\n\n", "\n").replace(",", ", ").split("\n"):
if line.strip() != "":
filename, text, emo_dir = line.split("\t")
filename = speaker_dir + "_" + filename.split("_")[1]
path_to_transcript_dict[f"{root}/{speaker_dir}/{emo_dir}/{filename}.wav"] = text
torch.save(path_to_transcript_dict, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_nvidia_hifitts(re_cache=False):
root = "/mount/resources/speech/corpora/hi_fi_tts_v0"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
transcripts = list()
import json
for jpath in [f"{root}/6097_manifest_clean_dev.json",
f"{root}/6097_manifest_clean_test.json",
f"{root}/6097_manifest_clean_train.json",
f"{root}/9017_manifest_clean_dev.json",
f"{root}/9017_manifest_clean_test.json",
f"{root}/9017_manifest_clean_train.json",
f"{root}/92_manifest_clean_dev.json",
f"{root}/92_manifest_clean_test.json",
f"{root}/92_manifest_clean_train.json"]:
with open(jpath, encoding='utf-8', mode='r') as jfile:
for line in jfile.read().split("\n"):
if line.strip() != "":
transcripts.append(json.loads(line))
for transcript in transcripts:
path = transcript["audio_filepath"]
norm_text = transcript["text_normalized"]
path_to_transcript[f"{root}/{path}"] = norm_text
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_blizzard_2013(re_cache=False):
root = "/mount/resources/speech/corpora/Blizzard2013/train/segmented/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(root + "prompts.gui", encoding="utf8") as f:
transcriptions = f.read()
blocks = transcriptions.split("||\n")
for block in blocks:
trans_lines = block.split("\n")
if trans_lines[0].strip() != "":
transcript = trans_lines[1].replace("@", "").replace("#", ",").replace("|", "").replace(";", ",").replace(
":", ",").replace(" 's", "'s").replace(", ,", ",").replace(" ", " ").replace(" ,", ",").replace(" .",
".").replace(
" ?", "?").replace(" !", "!").rstrip(" ,")
path_to_transcript[root + "wavn/" + trans_lines[0] + ".wav"] = transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_vctk(re_cache=False):
root = "/mount/resources/speech/corpora/VCTK"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
for transcript_dir in os.listdir("/mount/resources/speech/corpora/VCTK/txt"):
for transcript_file in os.listdir(f"/mount/resources/speech/corpora/VCTK/txt/{transcript_dir}"):
if transcript_file.endswith(".txt"):
with open(f"/mount/resources/speech/corpora/VCTK/txt/{transcript_dir}/" + transcript_file, 'r',
encoding='utf8') as tf:
transcript = tf.read()
wav_path = f"/mount/resources/speech/corpora/VCTK/wav48_silence_trimmed/{transcript_dir}/" + transcript_file.rstrip(
".txt") + "_mic2.flac"
if os.path.exists(wav_path):
path_to_transcript[wav_path] = transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_libritts_all_clean(re_cache=False):
root = "/mount/resources/speech/corpora/LibriTTS_R/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_train = "/mount/resources/speech/corpora/LibriTTS_R/" # using all files from the "clean" subsets from LibriTTS-R https://arxiv.org/abs/2305.18802
path_to_transcript = dict()
for speaker in os.listdir(path_train):
for chapter in os.listdir(os.path.join(path_train, speaker)):
for file in os.listdir(os.path.join(path_train, speaker, chapter)):
if file.endswith("normalized.txt"):
with open(os.path.join(path_train, speaker, chapter, file), 'r', encoding='utf8') as tf:
transcript = tf.read()
wav_file = file.split(".")[0] + ".wav"
path_to_transcript[os.path.join(path_train, speaker, chapter, wav_file)] = transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_libritts_other500(re_cache=False):
root = "/mount/resources/asr-data/LibriTTS/train-other-500"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_train = "/mount/resources/asr-data/LibriTTS/train-other-500"
path_to_transcript = dict()
for speaker in os.listdir(path_train):
for chapter in os.listdir(os.path.join(path_train, speaker)):
for file in os.listdir(os.path.join(path_train, speaker, chapter)):
if file.endswith("normalized.txt"):
with open(os.path.join(path_train, speaker, chapter, file), 'r', encoding='utf8') as tf:
transcript = tf.read()
wav_file = file.split(".")[0] + ".wav"
path_to_transcript[os.path.join(path_train, speaker, chapter, wav_file)] = transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_ljspeech(re_cache=False):
root = "/mount/resources/speech/corpora/LJSpeech/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
for transcript_file in os.listdir("/mount/resources/speech/corpora/LJSpeech/16kHz/txt"):
with open("/mount/resources/speech/corpora/LJSpeech/16kHz/txt/" + transcript_file, 'r', encoding='utf8') as tf:
transcript = tf.read()
wav_path = "/mount/resources/speech/corpora/LJSpeech/16kHz/wav/" + transcript_file.rstrip(".txt") + ".wav"
path_to_transcript[wav_path] = transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_jenny(re_cache=False):
"""
https://www.kaggle.com/datasets/noml4u/jenny-tts-dataset
https://github.com/dioco-group/jenny-tts-dataset
Dataset of Speaker Jenny (Dioco) with an Irish accent
"""
root = "/mount/resources/speech/corpora/Jenny/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open("/mount/resources/speech/corpora/Jenny/metadata.csv", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript["/mount/resources/speech/corpora/Jenny/" + line.split("|")[0] + "_silence.flac"] = line.split("|")[1]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# GERMAN
def build_path_to_transcript_dict_mls_german(re_cache=False):
lang = "german"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_karlsson(re_cache=False):
root = "/mount/resources/speech/corpora/HUI_German/Karlsson"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_hui_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_eva(re_cache=False):
root = "/mount/resources/speech/corpora/HUI_German/Eva"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_hui_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_bernd(re_cache=False):
root = "/mount/resources/speech/corpora/HUI_German/Bernd"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_hui_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_friedrich(re_cache=False):
root = "/mount/resources/speech/corpora/HUI_German/Friedrich"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_hui_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_hokus(re_cache=False):
root = "/mount/resources/speech/corpora/HUI_German/Hokus"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_hui_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_hui_others(re_cache=False):
root = "/mount/resources/speech/corpora/HUI_German/others"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
pttd = dict()
for speaker in os.listdir(root):
pttd.update(build_path_to_transcript_dict_hui_template(root=f"{root}/{speaker}"))
torch.save(pttd, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_thorsten_neutral(re_cache=False):
root = "/mount/resources/speech/corpora/ThorstenDatasets/thorsten-de_v03"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(root + "/metadata_train.csv", encoding="utf8") as f:
transcriptions = f.read()
with open(root + "/metadata_val.csv", encoding="utf8") as f:
transcriptions += "\n" + f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[root + "/wavs/" + line.split("|")[0] + ".wav"] = \
line.split("|")[1]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_thorsten_2022_10(re_cache=False):
root = "/mount/resources/speech/corpora/ThorstenDatasets/ThorstenVoice-Dataset_2022.10"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(root + "/metadata_train.csv", encoding="utf8") as f:
transcriptions = f.read()
with open(root + "/metadata_dev.csv", encoding="utf8") as f:
transcriptions += "\n" + f.read()
with open(root + "/metadata_test.csv", encoding="utf8") as f:
transcriptions += "\n" + f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[root + "/wavs/" + line.split("|")[0] + ".wav"] = \
line.split("|")[1]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_thorsten_emotional(re_cache=False):
root = "/mount/resources/speech/corpora/ThorstenDatasets/thorsten-emotional_v02"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(root + "/thorsten-emotional-metadata.csv", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[root + "/amused/" + line.split("|")[0] + ".wav"] = line.split("|")[1]
path_to_transcript[root + "/angry/" + line.split("|")[0] + ".wav"] = line.split("|")[1]
path_to_transcript[root + "/disgusted/" + line.split("|")[0] + ".wav"] = line.split("|")[1]
path_to_transcript[root + "/neutral/" + line.split("|")[0] + ".wav"] = line.split("|")[1]
path_to_transcript[root + "/sleepy/" + line.split("|")[0] + ".wav"] = line.split("|")[1]
path_to_transcript[root + "/surprised/" + line.split("|")[0] + ".wav"] = line.split("|")[1]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# FRENCH
def build_path_to_transcript_dict_mls_french(re_cache=False):
lang = "french"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_blizzard2023_ad_silence_removed(re_cache=False):
root = "/mount/resources/speech/corpora/Blizzard2023/AD_silence_removed"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "transcript.tsv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("\t")[1]
wav_path = os.path.join(root, line.split("\t")[0].split("/")[-1])
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript.replace("Β§", "").replace("#", "").replace("~", "").replace(" Β»", '"').replace("Β« ", '"').replace("Β»", '"').replace("Β«", '"')
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_blizzard2023_neb_silence_removed(re_cache=False):
root = "/mount/resources/speech/corpora/Blizzard2023/NEB_silence_removed"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "transcript.tsv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("\t")[1]
wav_path = os.path.join(root, line.split("\t")[0].split("/")[-1])
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript.replace("Β§", "").replace("#", "").replace("~", "").replace(" Β»", '"').replace("Β« ", '"').replace("Β»", '"').replace("Β«", '"')
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_blizzard2023_neb_e_silence_removed(re_cache=False):
root = "/mount/resources/speech/corpora/Blizzard2023/enhanced_NEB_subset_silence_removed"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "transcript.tsv"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("\t")[1]
wav_path = os.path.join(root, line.split("\t")[0].split("/")[-1])
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript.replace("Β§", "").replace("#", "").replace("~", "").replace(" Β»", '"').replace("Β« ", '"').replace("Β»", '"').replace("Β«", '"')
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_synpaflex_norm_subset(re_cache=False):
"""
Contributed by https://github.com/tomschelsen
"""
root = "/mount/resources/speech/corpora/synpaflex-corpus/5/v0.1/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
for text_path in glob.iglob(os.path.join(root, "**/*_norm.txt"), recursive=True):
with open(text_path, "r", encoding="utf8") as file:
norm_transcript = file.read()
path_obj = Path(text_path)
wav_path = str((path_obj.parent.parent / path_obj.name[:-9]).with_suffix(".wav"))
if Path(wav_path).exists():
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_siwis_subset(re_cache=False):
"""
Contributed by https://github.com/tomschelsen
"""
root = "/mount/resources/speech/corpora/SiwisFrenchSpeechSynthesisDatabase/"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
# part4 and part5 are not segmented
sub_dirs = ["part1", "part2", "part3"]
path_to_transcript = dict()
for sd in sub_dirs:
for text_path in glob.iglob(os.path.join(root, "text", sd, "*.txt")):
with open(text_path, "r", encoding="utf8") as file:
norm_transcript = file.read()
path_obj = Path(text_path)
wav_path = str((path_obj.parent.parent.parent / "wavs" / sd / path_obj.stem).with_suffix(".wav"))
if Path(wav_path).exists():
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_css10fr(re_cache=False):
language = "french"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# SPANISH
def build_path_to_transcript_dict_mls_spanish(re_cache=False):
lang = "spanish"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_css10es(re_cache=False):
language = "spanish"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_spanish_blizzard_train(re_cache=False):
root = "/mount/resources/speech/corpora/Blizzard2021/spanish_blizzard_release_2021_v2/hub"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(os.path.join(root, "train_text.txt"), "r", encoding="utf8") as file:
lookup = file.read()
for line in lookup.split("\n"):
if line.strip() != "":
norm_transcript = line.split("\t")[1]
wav_path = os.path.join(root, "train_wav", line.split("\t")[0] + ".wav")
if os.path.exists(wav_path):
path_to_transcript[wav_path] = norm_transcript
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# PORTUGUESE
def build_path_to_transcript_dict_mls_portuguese(re_cache=False):
lang = "portuguese"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# POLISH
def build_path_to_transcript_dict_mls_polish(re_cache=False):
lang = "polish"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# ITALIAN
def build_path_to_transcript_dict_mls_italian(re_cache=False):
lang = "italian"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# DUTCH
def build_path_to_transcript_dict_mls_dutch(re_cache=False):
lang = "dutch"
root = f"/mount/resources/speech/corpora/MultiLingLibriSpeech/mls_{lang}/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = build_path_to_transcript_dict_multi_ling_librispeech_template(root=root)
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_css10nl(re_cache=False):
language = "dutch"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# GREEK
def build_path_to_transcript_dict_css10el(re_cache=False):
language = "greek"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# FINNISH
def build_path_to_transcript_dict_css10fi(re_cache=False):
language = "finnish"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# VIETNAMESE
def build_path_to_transcript_dict_VIVOS_viet(re_cache=False):
root = "/mount/resources/speech/corpora/VIVOS_vietnamese/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript_dict = dict()
with open(root + "/prompts.txt", mode="r", encoding="utf8") as f:
transcripts = f.read().split("\n")
for transcript in transcripts:
if transcript.strip() != "":
parsed_line = transcript.split(" ")
audio_file = f"{root}/waves/{parsed_line[0][:10]}/{parsed_line[0]}.wav"
path_to_transcript_dict[audio_file] = " ".join(parsed_line[1:]).lower()
torch.save(path_to_transcript_dict, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_vietTTS(re_cache=False):
root = "/mount/resources/speech/corpora/VietTTS"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(root + "/meta_data.tsv", encoding="utf8") as f:
transcriptions = f.read()
for line in transcriptions.split("\n"):
if line.strip() != "":
parsed_line = line.split(".wav")
audio_path = parsed_line[0]
transcript = parsed_line[1]
path_to_transcript[os.path.join(root, audio_path + ".wav")] = transcript.strip()
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# CHINESE
def build_path_to_transcript_dict_aishell3(re_cache=False):
root = "/mount/resources/speech/corpora/aishell3/train"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript_dict = dict()
with open(root + "/label_train-set.txt", mode="r", encoding="utf8") as f:
transcripts = f.read().replace("$", "").replace("%", " ").split("\n")
for transcript in transcripts:
if transcript.strip() != "" and not transcript.startswith("#"):
parsed_line = transcript.split("|")
audio_file = f"{root}/wav/{parsed_line[0][:7]}/{parsed_line[0]}.wav"
kanji = parsed_line[2]
path_to_transcript_dict[audio_file] = kanji
torch.save(path_to_transcript_dict, cache_path)
return torch.load(cache_path)
def build_path_to_transcript_dict_css10cmn(re_cache=False):
language = "chinese"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open("/mount/resources/speech/corpora/CSS10/chinese/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript["/mount/resources/speech/corpora/CSS10/chinese/" + line.split("|")[0]] = line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# RUSSIAN
def build_path_to_transcript_dict_css10ru(re_cache=False):
language = "russian"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# HUNGARIAN
def build_path_to_transcript_dict_css10hu(re_cache=False):
language = "hungarian"
root = f"/mount/resources/speech/corpora/CSS10/{language}"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
path_to_transcript = dict()
language = "hungarian"
with open(f"/mount/resources/speech/corpora/CSS10/{language}/transcript.txt", encoding="utf8") as f:
transcriptions = f.read()
trans_lines = transcriptions.split("\n")
for line in trans_lines:
if line.strip() != "":
path_to_transcript[f"/mount/resources/speech/corpora/CSS10/{language}/{line.split('|')[0]}"] = \
line.split("|")[2]
torch.save(path_to_transcript, cache_path)
return torch.load(cache_path)
# OTHER
def build_file_list_singing_voice_audio_database(re_cache=False):
root = "/mount/resources/speech/corpora/singing_voice_audio_dataset/monophonic"
cache_path = os.path.join(root, "pttd_cache.pt")
if not os.path.exists(cache_path) or re_cache:
file_list = list()
for corw in os.listdir(root):
for singer in os.listdir(os.path.join(root, corw)):
for audio in os.listdir(os.path.join(root, corw, singer)):
file_list.append(os.path.join(root, corw, singer, audio))
torch.save(file_list, cache_path)
return torch.load(cache_path)
from pathlib import Path
import xml.etree.ElementTree as ET
from csv import DictReader
import json
def build_path_to_transcript_dict_nst_norwegian():
root = '/resources/speech/corpora/NST_norwegian/pcm/cs'
path_to_transcript = dict()
audio_paths = sorted(list(Path(root).glob('*.pcm')))
i = 0
with open(Path(root, 'SCRIPTS/CTTS_core'), encoding='latin-1') as f:
for line in f:
transcript = line.strip().replace('\xad', '')
path = str(audio_paths[i].absolute())
path_to_transcript[path] = transcript
i += 1
return path_to_transcript
def build_path_to_transcript_dict_nst_swedish():
root = '/resources/speech/corpora/NST_swedish/sw_pcms'
path_to_transcript = dict()
audio_paths = sorted(list(Path(root, 'mf').glob('*.pcm')))
audio_paths.insert(4154, None)
audio_paths.insert(5144, None)
i = 0
with open(Path(root, 'scripts/mf/sw_all'), encoding='latin-1') as f:
for line in f:
if i == 4154 or i == 5144:
i += 1
continue
transcript = line.strip().replace('\xad', '')
path = str(audio_paths[i].absolute())
path_to_transcript[path] = transcript
i += 1
return path_to_transcript
def build_path_to_transcript_dict_nchlt_afr():
root = '/resources/speech/corpora/nchlt_afr'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='afr')
def build_path_to_transcript_dict_nchlt_nbl():
root = '/resources/speech/corpora/nchlt_nbl'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='nbl')
def build_path_to_transcript_dict_nchlt_nso():
root = '/resources/speech/corpora/nchlt_nso'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='nso')
def build_path_to_transcript_dict_nchlt_sot():
root = '/resources/speech/corpora/nchlt_sot'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='sot')
def build_path_to_transcript_dict_nchlt_ssw():
root = '/resources/speech/corpora/nchlt_ssw'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='ssw')
def build_path_to_transcript_dict_nchlt_tsn():
root = '/resources/speech/corpora/nchlt_tsn'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='tsn')
def build_path_to_transcript_dict_nchlt_tso():
root = '/resources/speech/corpora/nchlt_tso'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='tso')
def build_path_to_transcript_dict_nchlt_ven():
root = '/resources/speech/corpora/nchlt_ven'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='ven')
def build_path_to_transcript_dict_nchlt_xho():
root = '/resources/speech/corpora/nchlt_xho'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='xho')
def build_path_to_transcript_dict_nchlt_zul():
root = '/resources/speech/corpora/nchlt_zul'
return build_path_to_transcript_dict_nchlt_template(root, lang_code='zul')
def build_path_to_transcript_dict_nchlt_template(root, lang_code):
path_to_transcript = dict()
base_dir = Path(root).parent
for split in ['trn', 'tst']:
tree = ET.parse(f'{root}/transcriptions/nchlt_{lang_code}.{split}.xml')
tree_root = tree.getroot()
for rec in tree_root.iter('recording'):
transcript = rec.find('orth').text
if '[s]' in transcript:
continue
path = str(base_dir / rec.get('audio'))
path_to_transcript[path] = transcript
return path_to_transcript
def build_path_to_transcript_dict_bibletts_akuapem_twi():
path_to_transcript = dict()
root = '/resources/speech/corpora/BibleTTS/akuapem-twi'
for split in ['train', 'dev', 'test']:
for book in Path(root, split).glob('*'):
for textfile in book.glob('*.txt'):
with open(textfile, 'r', encoding='utf-8') as f:
text = ' '.join([line.strip() for line in f]) # should usually be only one line anyway
path_to_transcript[textfile.with_suffix('.flac')] = text
return path_to_transcript
def build_path_to_transcript_dict_bembaspeech():
root = '/resources/speech/corpora/BembaSpeech/bem'
path_to_transcript = dict()
for split in ['train', 'dev', 'test']:
with open(Path(root, f'{split}.tsv'), 'r', encoding='utf-8') as f:
reader = DictReader(f, delimiter='\t')
for row in reader:
path_to_transcript[str(Path(root, 'audio', row['audio']))] = row['sentence']
return path_to_transcript
def build_path_to_transcript_dict_alffa_sw():
root = '/resources/speech/corpora/ALFFA/data_broadcastnews_sw/data'
path_to_transcript = build_path_to_transcript_dict_kaldi_template(root=root, split='train', replace_in_path=('asr_swahili/data/', ''))
path_to_transcript.update(build_path_to_transcript_dict_kaldi_template(root=root, split='test', replace_in_path=('/my_dir/wav', 'test/wav5')))
return path_to_transcript
def build_path_to_transcript_dict_alffa_am():
root = '/resources/speech/corpora/ALFFA/data_readspeech_am/data'
path_to_transcript = build_path_to_transcript_dict_kaldi_template(root=root, split='train', replace_in_path=('/home/melese/kaldi/data/', ''))
path_to_transcript.update(build_path_to_transcript_dict_kaldi_template(root=root, split='test', replace_in_path=('/home/melese/kaldi/data/', '')))
return path_to_transcript
def build_path_to_transcript_dict_alffa_wo():
root = '/resources/speech/corpora/ALFFA/data_readspeech_wo/data'
path_to_transcript = dict()
for split in ['train', 'dev', 'test']:
with open(Path(root, split, 'text'), 'r', encoding='utf-8') as f:
for line in f:
line = line.strip().split()
file = line[0]
text = ' '.join(line[1:])
number = file.split('_')[1]
path_to_transcript[str(Path(root, split, number, f'{file}.wav'))] = text
return path_to_transcript
def build_path_to_transcript_dict_malayalam():
root = '/resources/speech/corpora/malayalam'
path_to_transcript = dict()
for gender in ['female', 'male']:
with open(Path(root, f'line_index_{gender}.tsv'), 'r', encoding='utf-8') as f:
for line in f:
file, text = line.strip().split('\t')
path_to_transcript[str(Path(root, gender, f'{file}.wav'))] = text
return path_to_transcript
def build_path_to_transcript_dict_msc():
root = '/resources/speech/corpora/msc_reviewed_speech'
path_to_transcript = dict()
with open(Path(root, f'metadata.tsv'), 'r', encoding='utf-8') as f:
reader = DictReader(f, delimiter='\t')
for row in reader:
path_to_transcript[str(Path(root, row['speechpath']))] = row['transcript']
return path_to_transcript
def build_path_to_transcript_dict_chuvash():
root = '/resources/speech/corpora/chuvash'
path_to_transcript = dict()
for textfile in Path(root, 'transcripts', 'txt').glob('*.txt'):
with open(textfile, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip().split()
text = ' '.join(line[1:]).replace('Β«', '').replace('Β»', '')
path = Path(root, 'audio', 'split', f'trim_clean_{textfile.stem}.{line[0]}.flac')
if path.exists():
path_to_transcript[str(path)] = text
return path_to_transcript
def build_path_to_transcript_dict_iban():
root = '/resources/speech/corpora/iban/data'
path_to_transcript = build_path_to_transcript_dict_kaldi_template(root, 'train', replace_in_path=(
'asr_iban/data/', ''))
path_to_transcript.update(build_path_to_transcript_dict_kaldi_template(root, 'dev', replace_in_path=(
'asr_iban/data/', '')))
return path_to_transcript
def build_path_to_transcript_dict_kaldi_template(root, split, replace_in_path=None):
path_to_transcript = dict()
wav_scp = {}
with open(Path(root, split, 'wav.scp'), 'r') as f:
for line in f:
wav_id, wav_path = line.split()
if replace_in_path:
wav_path = wav_path.replace(replace_in_path[0], replace_in_path[1])
wav_scp[wav_id] = str(Path(root, wav_path))
with open(Path(root, split, 'text'), 'r', encoding='utf-8') as f:
for line in f:
line = line.split()
wav_id = line[0]
text = ' '.join(line[1:])
if '<' in text: # ignore all <UNK> utterance etc.
continue
path_to_transcript[wav_scp[wav_id]] = text
return path_to_transcript
def build_path_to_transcript_dict_sundanese_speech():
root = '/resources/speech/corpora/sundanese_speech/asr_sundanese'
return build_path_to_transcript_dict_south_asian_languages_template(root)
def build_path_to_transcript_dict_sinhala_speech():
root = '/resources/speech/corpora/sinhala_speech/asr_sinhala'
return build_path_to_transcript_dict_south_asian_languages_template(root)
def build_path_to_transcript_dict_bengali_speech():
root = '/resources/speech/corpora/bengali_speech/asr_bengali'
return build_path_to_transcript_dict_south_asian_languages_template(root)
def build_path_to_transcript_dict_nepali_speech():
root = '/resources/speech/corpora/nepali_speech/asr_nepali'
return build_path_to_transcript_dict_south_asian_languages_template(root)
def build_path_to_transcript_dict_javanese_speech():
root = '/resources/speech/corpora/javanese_speech/asr_javanese'
return build_path_to_transcript_dict_south_asian_languages_template(root)
def build_path_to_transcript_dict_south_asian_languages_template(root):
path_to_transcript = dict()
with open(Path(root, 'utt_spk_text.tsv'), 'r', encoding='utf-8') as f:
for line in f:
utt, spk, text = line.strip().split('\t')
dir_tag = utt[:2]
path_to_transcript[str(Path(root, 'data', dir_tag, f'{utt}.flac'))] = text
return path_to_transcript
def build_path_to_transcript_dict_african_voices_kenyan_afv():
root = '/resources/speech/corpora/AfricanVoices/afv_enke'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_fon_alf():
root = '/resources/speech/corpora/AfricanVoices/fon_alf'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_hausa_cmv():
main_root = '/resources/speech/corpora/AfricanVoices'
path_to_transcript = build_path_to_transcript_dict_african_voices_template(f'{main_root}/hau_cmv_f')
path_to_transcript.update(build_path_to_transcript_dict_african_voices_template(f'{main_root}/hau_cmv_m'))
return path_to_transcript
def build_path_to_transcript_dict_african_voices_ibibio_lst():
root = '/resources/speech/corpora/AfricanVoices/ibb_lst'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_kikuyu_opb():
root = '/resources/speech/corpora/AfricanVoices/kik_opb'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_lingala_opb():
root = '/resources/speech/corpora/AfricanVoices/lin_opb'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_ganda_cmv():
root = '/resources/speech/corpora/AfricanVoices/lug_cmv'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_luo_afv():
root = '/resources/speech/corpora/AfricanVoices/luo_afv'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_luo_opb():
root = '/resources/speech/corpora/AfricanVoices/luo_opb'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_swahili_llsti():
root = '/resources/speech/corpora/AfricanVoices/swa_llsti'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_suba_afv():
root = '/resources/speech/corpora/AfricanVoices/sxb_afv'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_wolof_alf():
root = '/resources/speech/corpora/AfricanVoices/wol_alf'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_yoruba_opb():
root = '/resources/speech/corpora/AfricanVoices/yor_opb'
return build_path_to_transcript_dict_african_voices_template(root)
def build_path_to_transcript_dict_african_voices_template(root):
path_to_transcript = dict()
with open(Path(root, 'txt.done.data'), 'r', encoding='utf-8') as f:
for line in f:
line = line.replace('\\"', "'").split('"')
text = line[1]
file = line[0].split()[-1]
path_to_transcript[str(Path(root, 'wav', f'{file}.wav'))] = text
return path_to_transcript
def build_path_to_transcript_dict_zambezi_voice_nyanja():
root = '/resources/speech/corpora/ZambeziVoice/nyanja/nya'
return build_path_to_transcript_dict_zambezi_voice_template(root)
def build_path_to_transcript_dict_zambezi_voice_lozi():
root = '/resources/speech/corpora/ZambeziVoice/lozi/loz'
return build_path_to_transcript_dict_zambezi_voice_template(root)
def build_path_to_transcript_dict_zambezi_voice_tonga():
root = '/resources/speech/corpora/ZambeziVoice/tonga/toi'
return build_path_to_transcript_dict_zambezi_voice_template(root)
def build_path_to_transcript_dict_zambezi_voice_template(root):
path_to_transcript = dict()
for split in ['train', 'dev', 'test']:
with open(Path(root, f'{split}.tsv'), 'r', encoding='utf-8') as f:
reader = DictReader(f, delimiter='\t')
for row in reader:
path_to_transcript[str(Path(root, 'audio', row['audio_id']))] = row['sentence'].strip()
return path_to_transcript
def build_path_to_transcript_dict_fleurs_template(root):
path_to_transcript = dict()
for split in ['train', 'dev', 'test']:
with open(Path(root, f'{split}.tsv'), 'r', encoding='utf-8') as f:
reader = DictReader(f, delimiter='\t', fieldnames=['id', 'filename', 'transcription_raw',
'transcription', 'words', 'speaker', 'gender'])
for row in reader:
path_to_transcript[str(Path(root, 'audio', split, row['filename']))] = row['transcription_raw'].strip()
return path_to_transcript
def build_path_to_transcript_dict_fleurs_afrikaans():
root = '/resources/speech/corpora/fleurs/af_za'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_amharic():
root = '/resources/speech/corpora/fleurs/am_et'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_arabic():
root = '/resources/speech/corpora/fleurs/ar_eg'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_assamese():
root = '/resources/speech/corpora/fleurs/as_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_asturian():
root = '/resources/speech/corpora/fleurs/ast_es'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_azerbaijani():
root = '/resources/speech/corpora/fleurs/az_az'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_belarusian():
root = '/resources/speech/corpora/fleurs/be_by'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_bulgarian():
root = '/resources/speech/corpora/fleurs/bg_bg'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_bengali():
root = '/resources/speech/corpora/fleurs/bn_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_bosnian():
root = '/resources/speech/corpora/fleurs/bs_ba'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_catalan():
root = '/resources/speech/corpora/fleurs/ca_es'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_cebuano():
root = '/resources/speech/corpora/fleurs/ceb_ph'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_sorani_kurdish():
root = '/resources/speech/corpora/fleurs/ckb_iq'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_mandarin():
root = '/resources/speech/corpora/fleurs/cmn_hans_cn'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_czech():
root = '/resources/speech/corpora/fleurs/cs_cz'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_welsh():
root = '/resources/speech/corpora/fleurs/cy_gb'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_danish():
root = '/resources/speech/corpora/fleurs/da_dk'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_german():
root = '/resources/speech/corpora/fleurs/de_de'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_greek():
root = '/resources/speech/corpora/fleurs/el_gr'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_english():
root = '/resources/speech/corpora/fleurs/en_us'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_spanish():
root = '/resources/speech/corpora/fleurs/es_419'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_estonian():
root = '/resources/speech/corpora/fleurs/et_ee'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_persian():
root = '/resources/speech/corpora/fleurs/fa_ir'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_fula():
root = '/resources/speech/corpora/fleurs/ff_sn'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_finnish():
root = '/resources/speech/corpora/fleurs/fi_fi'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_filipino():
root = '/resources/speech/corpora/fleurs/fil_ph'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_french():
root = '/resources/speech/corpora/fleurs/fr_fr'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_irish():
root = '/resources/speech/corpora/fleurs/ga_ie'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_galician():
root = '/resources/speech/corpora/fleurs/gl_es'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_gujarati():
root = '/resources/speech/corpora/fleurs/gu_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_hausa():
root = '/resources/speech/corpora/fleurs/ha_ng'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_hebrew():
root = '/resources/speech/corpora/fleurs/he_il'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_hindi():
root = '/resources/speech/corpora/fleurs/hi_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_croatian():
root = '/resources/speech/corpora/fleurs/hr_hr'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_hungarian():
root = '/resources/speech/corpora/fleurs/hu_hu'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_armenian():
root = '/resources/speech/corpora/fleurs/hy_am'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_indonesian():
root = '/resources/speech/corpora/fleurs/id_id'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_igbo():
root = '/resources/speech/corpora/fleurs/ig_ng'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_icelandic():
root = '/resources/speech/corpora/fleurs/is_is'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_italian():
root = '/resources/speech/corpora/fleurs/it_it'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_japanese():
root = '/resources/speech/corpora/fleurs/ja_jp'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_javanese():
root = '/resources/speech/corpora/fleurs/jv_id'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_georgian():
root = '/resources/speech/corpora/fleurs/ka_ge'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_kamba():
root = '/resources/speech/corpora/fleurs/kam_ke'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_kabuverdianu():
root = '/resources/speech/corpora/fleurs/kea_cv'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_kazakh():
root = '/resources/speech/corpora/fleurs/kk_kz'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_khmer():
root = '/resources/speech/corpora/fleurs/km_kh'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_kannada():
root = '/resources/speech/corpora/fleurs/kn_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_korean():
root = '/resources/speech/corpora/fleurs/ko_kr'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_kyrgyz():
root = '/resources/speech/corpora/fleurs/ky_kg'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_luxembourgish():
root = '/resources/speech/corpora/fleurs/lb_lu'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_ganda():
root = '/resources/speech/corpora/fleurs/lg_ug'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_lingala():
root = '/resources/speech/corpora/fleurs/ln_cd'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_lao():
root = '/resources/speech/corpora/fleurs/lo_la'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_lithuanian():
root = '/resources/speech/corpora/fleurs/lt_lt'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_luo():
root = '/resources/speech/corpora/fleurs/luo_ke'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_latvian():
root = '/resources/speech/corpora/fleurs/lv_lv'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_maori():
root = '/resources/speech/corpora/fleurs/mi_nz'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_macedonian():
root = '/resources/speech/corpora/fleurs/mk_mk'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_malayalam():
root = '/resources/speech/corpora/fleurs/ml_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_mongolian():
root = '/resources/speech/corpora/fleurs/mn_mn'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_marathi():
root = '/resources/speech/corpora/fleurs/mr_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_malay():
root = '/resources/speech/corpora/fleurs/ms_my'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_maltese():
root = '/resources/speech/corpora/fleurs/mt_mt'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_burmese():
root = '/resources/speech/corpora/fleurs/my_mm'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_norwegian():
root = '/resources/speech/corpora/fleurs/nb_no'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_nepali():
root = '/resources/speech/corpora/fleurs/ne_np'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_dutch():
root = '/resources/speech/corpora/fleurs/nl_nl'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_northern_sotho():
root = '/resources/speech/corpora/fleurs/nso_za'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_nyanja():
root = '/resources/speech/corpora/fleurs/ny_mw'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_occitan():
root = '/resources/speech/corpora/fleurs/oc_fr'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_oroma():
root = '/resources/speech/corpora/fleurs/om_et'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_oriya():
root = '/resources/speech/corpora/fleurs/or_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_punjabi():
root = '/resources/speech/corpora/fleurs/pa_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_polish():
root = '/resources/speech/corpora/fleurs/pl_pl'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_pashto():
root = '/resources/speech/corpora/fleurs/ps_af'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_portuguese():
root = '/resources/speech/corpora/fleurs/pt_br'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_romanian():
root = '/resources/speech/corpora/fleurs/ro_ro'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_russian():
root = '/resources/speech/corpora/fleurs/ru_ru'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_sindhi():
root = '/resources/speech/corpora/fleurs/sd_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_slovak():
root = '/resources/speech/corpora/fleurs/sk_sk'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_slovenian():
root = '/resources/speech/corpora/fleurs/sl_si'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_shona():
root = '/resources/speech/corpora/fleurs/sn_zw'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_somali():
root = '/resources/speech/corpora/fleurs/so_so'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_serbian():
root = '/resources/speech/corpora/fleurs/sr_rs'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_swedish():
root = '/resources/speech/corpora/fleurs/sv_se'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_swahili():
root = '/resources/speech/corpora/fleurs/sw_ke'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_tamil():
root = '/resources/speech/corpora/fleurs/ta_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_telugu():
root = '/resources/speech/corpora/fleurs/te_in'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_tajik():
root = '/resources/speech/corpora/fleurs/tg_tj'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_thai():
root = '/resources/speech/corpora/fleurs/th_th'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_turkish():
root = '/resources/speech/corpora/fleurs/tr_tr'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_ukrainian():
root = '/resources/speech/corpora/fleurs/uk_ua'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_umbundu():
root = '/resources/speech/corpora/fleurs/umb_ao'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_urdu():
root = '/resources/speech/corpora/fleurs/ur_pk'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_uzbek():
root = '/resources/speech/corpora/fleurs/uz_uz'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_vietnamese():
root = '/resources/speech/corpora/fleurs/vi_vn'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_wolof():
root = '/resources/speech/corpora/fleurs/wo_sn'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_xhosa():
root = '/resources/speech/corpora/fleurs/xh_za'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_yoruba():
root = '/resources/speech/corpora/fleurs/yo_ng'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_cantonese():
root = '/resources/speech/corpora/fleurs/yue_hant_hk'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_fleurs_zulu():
root = '/resources/speech/corpora/fleurs/zu_za'
return build_path_to_transcript_dict_fleurs_template(root)
def build_path_to_transcript_dict_living_audio_dataset_template(root):
path_to_transcript = dict()
tree = ET.parse(f'{root}/text.xml')
tree_root = tree.getroot()
for rec in tree_root.iter('recording_script'):
for file in rec.iter('fileid'):
path_to_transcript[str(Path(root, '48000_orig', f'{file.get("id")}.wav'))] = file.text.strip()
return path_to_transcript
def build_path_to_transcript_dict_living_audio_dataset_irish():
root = '/resources/speech/corpora/LivingAudioDataset/ga'
return build_path_to_transcript_dict_living_audio_dataset_template(root)
def build_path_to_transcript_dict_living_audio_dataset_dutch():
root = '/resources/speech/corpora/LivingAudioDataset/nl'
return build_path_to_transcript_dict_living_audio_dataset_template(root)
def build_path_to_transcript_dict_living_audio_dataset_russian():
root = '/resources/speech/corpora/LivingAudioDataset/ru'
return build_path_to_transcript_dict_living_audio_dataset_template(root)
def build_path_to_transcript_dict_romanian_db():
root = '/resources/speech/corpora/RomanianDB'
path_to_transcript = dict()
for split in ['training', 'testing', 'elena', 'georgiana']:
for transcript in Path(root, split, 'text').glob('*.txt'):
subset = transcript.stem
with open(transcript, 'r', encoding='utf-8') as f:
for line in f:
fileid = line.strip()[:2]
if len(fileid) == 2:
fileid = '0' + fileid
text = line.strip()[5:]
if split == 'elena':
path = f'ele_{subset}_{fileid}.wav'
elif split == 'georgiana':
path = f'geo_{subset}_{fileid}.wav'
else:
path = f'adr_{subset}_{fileid}.wav'
path_to_transcript[str(Path(root, split, 'wav', subset, path))] = text
return path_to_transcript
def build_path_to_transcript_dict_shemo():
root = '/resources/speech/corpora/ShEMO'
path_to_transcript = dict()
with open('/resources/speech/corpora/ShEMO/shemo.json', 'r', encoding='utf-8') as f:
data = json.load(f)
for fileid, file_info in data.items():
path = Path(root, file_info['gender'], f'{fileid}.wav')
if path.exists():
path_to_transcript[str(path)] = file_info['transcript']
return path_to_transcript
def build_path_to_transcript_dict_mslt_template(root, lang='en'):
path_to_transcript = dict()
for split in Path(root).glob('*'):
if split.is_dir():
for audio_file in split.glob('*.wav'):
text_file = str(audio_file).replace(f'T0.{lang}.wav', f'T1.{lang}.snt')
with open(text_file, 'r', encoding='utf-16') as f:
for line in f:
text = line.strip() # should have only one line
if '<' in text or '[' in text:
# ignore all utterances with special parts like [laughter] or <UNIN/>
continue
path_to_transcript[str(audio_file)] = text
break
return path_to_transcript
def build_path_to_transcript_dict_mslt_english():
root = '/resources/speech/corpora/MSLT/Data/EN'
return build_path_to_transcript_dict_mslt_template(root, lang='en')
def build_path_to_transcript_dict_mslt_japanese():
root = '/resources/speech/corpora/MSLT/Data/JA'
return build_path_to_transcript_dict_mslt_template(root, lang='jp')
def build_path_to_transcript_dict_mslt_chinese():
root = '/resources/speech/corpora/MSLT/Data/ZH'
return build_path_to_transcript_dict_mslt_template(root, lang='ch')
def build_path_to_transcript_dict_rajasthani_hindi_speech():
root = '/resources/speech/corpora/Rajasthani_Hindi_Speech/Hindi-Speech-Data'
path_to_transcript = dict()
for audio_file in Path(root).glob('*.3gp'):
with open(audio_file.with_suffix('.txt'), 'r', encoding='utf-8') as f:
for line in f: # should only be one line
text = line.strip()
path_to_transcript[str(audio_file)] = text
return path_to_transcript
def build_path_to_transcript_dict_cmu_arctic():
root = '/resources/speech/corpora/cmu_arctic'
path_to_transcript = dict()
for speaker_dir in Path(root).glob('*'):
if speaker_dir.is_dir():
with open(Path(speaker_dir, 'etc', 'txt.done.data'), 'r', encoding='utf-8') as f:
for line in f:
line = line.replace('\\"', "'").split('"')
text = line[1]
file = line[0].split()[-1]
path_to_transcript[str(Path(speaker_dir, 'wav', f'{file}.wav'))] = text
return path_to_transcript
def build_path_to_transcript_dict_sevil_tatar():
root = '/resources/speech/corpora/sevil_tatar/sevil'
path_to_transcript = dict()
with open(Path(root, 'metadata.jsonl'), 'r', encoding='utf-8') as f:
for line in f:
meta = json.loads(line)
path_to_transcript[str(Path(root, meta['file']))] = meta['orig_text'].strip().replace('\xad', '')
return path_to_transcript
def build_path_to_transcript_dict_clartts():
root = '/resources/speech/corpora/ClArTTS'
path_to_transcript = dict()
with open(Path(root, 'training.txt'), 'r', encoding='utf-16') as f:
for line in f:
fileid, transcript = line.strip().split('|')
path_to_transcript[str(Path(root, 'wav', 'train', f'{fileid}.wav'))] = transcript
with open(Path(root, 'validation.txt'), 'r', encoding='utf-16') as f:
for line in f:
fileid, transcript = line.strip().split('|')
path_to_transcript[str(Path(root, 'wav', 'val', f'{fileid}.wav'))] = transcript
return path_to_transcript
def build_path_to_transcript_dict_snow_mountain_template(root, lang):
path_to_transcript = dict()
for split in ['train_full', 'val_full', 'test_common']:
with open(Path(root, 'experiments', lang, f'{split}.csv'), 'r', encoding='utf-8') as f:
reader = DictReader(f, delimiter=',')
for row in reader:
path = row['path'].replace('data/', f'{root}/')
path_to_transcript[path] = row['sentence'].strip()
return path_to_transcript
def build_path_to_transcript_dict_snow_mountain_bhadrawahi():
root = '/resources/speech/corpora/snow_mountain'
language = 'bhadrawahi'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_bilaspuri():
root = '/resources/speech/corpora/snow_mountain'
language = 'bilaspuri'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_dogri():
root = '/resources/speech/corpora/snow_mountain'
language = 'dogri'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_gaddi():
root = '/resources/speech/corpora/snow_mountain'
language = 'gaddi'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_haryanvi():
root = '/resources/speech/corpora/snow_mountain'
language = 'haryanvi'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_hindi():
root = '/resources/speech/corpora/snow_mountain'
language = 'hindi'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_kangri():
root = '/resources/speech/corpora/snow_mountain'
language = 'kangri'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_kannada():
root = '/resources/speech/corpora/snow_mountain'
language = 'kannada'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_kulvi():
root = '/resources/speech/corpora/snow_mountain'
language = 'kulvi'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_kulvi_outer_seraji():
root = '/resources/speech/corpora/snow_mountain'
language = 'kulvi_outer_seraji'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_malayalam():
root = '/resources/speech/corpora/snow_mountain'
language = 'malayalam'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_mandeali():
root = '/resources/speech/corpora/snow_mountain'
language = 'mandeali'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_pahari_mahasui():
root = '/resources/speech/corpora/snow_mountain'
language = 'pahari_mahasui'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_tamil():
root = '/resources/speech/corpora/snow_mountain'
language = 'tamil'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_snow_mountain_telugu():
root = '/resources/speech/corpora/snow_mountain'
language = 'telugu'
return build_path_to_transcript_dict_snow_mountain_template(root, language)
def build_path_to_transcript_dict_ukrainian_lada():
root = '/resources/speech/corpora/ukrainian_lada/dataset_lada/accept'
path_to_transcript = dict()
with open(Path(root, 'metadata.jsonl'), 'r', encoding='utf-8') as f:
for line in f:
meta = json.loads(line)
path_to_transcript[str(Path(root, meta['file']).with_suffix('.wav'))] = meta['orig_text'].strip().replace('\xad', '')
return path_to_transcript
def build_path_to_transcript_dict_m_ailabs_template(root):
path_to_transcript = dict()
for gender_dir in Path(root).glob('*'):
if not gender_dir.is_dir():
continue
for speaker_dir in gender_dir.glob('*'):
if not speaker_dir.is_dir():
continue
if (speaker_dir / 'wavs').exists():
with open(Path(speaker_dir, 'metadata.csv'), 'r', encoding='utf-8') as f:
for line in f:
fileid, text, text_norm = line.strip().split('|')
path = Path(speaker_dir, 'wavs', f'{fileid}.wav')
if path.exists():
path_to_transcript[str(path)] = text_norm
else:
for session_dir in speaker_dir.glob('*'):
if not session_dir.is_dir():
continue
with open(Path(session_dir, 'metadata.csv'), 'r', encoding='utf-8') as f:
for line in f:
fileid, text, text_norm = line.strip().split('|')
path = Path(session_dir, 'wavs', f'{fileid}.wav')
if path.exists():
path_to_transcript[str(path)] = text_norm
return path_to_transcript
def build_path_to_transcript_dict_m_ailabs_german():
root = '/resources/speech/corpora/m-ailabs-speech/de_DE'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_uk_english():
root = '/resources/speech/corpora/m-ailabs-speech/en_UK'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_us_english():
root = '/resources/speech/corpora/m-ailabs-speech/en_US'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_spanish():
root = '/resources/speech/corpora/m-ailabs-speech/es_ES'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_french():
root = '/resources/speech/corpora/m-ailabs-speech/fr_FR'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_italian():
root = '/resources/speech/corpora/m-ailabs-speech/it_IT'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_polish():
root = '/resources/speech/corpora/m-ailabs-speech/pl_PL'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_russian():
root = '/resources/speech/corpora/m-ailabs-speech/ru_RU'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_m_ailabs_ukrainian():
root = '/resources/speech/corpora/m-ailabs-speech/uk_UK'
return build_path_to_transcript_dict_m_ailabs_template(root)
def build_path_to_transcript_dict_cml_tts_template(root):
path_to_transcript = dict()
for split in ['train', 'dev', 'test']:
with open(Path(root, f'{split}.csv'), 'r', encoding='utf-8') as f:
reader = DictReader(f, delimiter='|')
for row in reader:
path_to_transcript[str(Path(root, row['wav_filename']))] = row['transcript'].strip()
return path_to_transcript
def build_path_to_transcript_dict_cml_tts_dutch():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_dutch_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_cml_tts_french():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_french_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_cml_tts_german():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_german_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_cml_tts_italian():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_italian_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_cml_tts_polish():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_polish_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_cml_tts_portuguese():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_portuguese_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_cml_tts_spanish():
root = '/resources/speech/corpora/cml_tts/cml_tts_dataset_spanish_v0.1'
return build_path_to_transcript_dict_cml_tts_template(root)
def build_path_to_transcript_dict_mms_template(lang, root='/resources/speech/corpora/mms_synthesized_bible_speech'):
path_to_transcript = dict()
i = 0
with open(Path(root, 'bible_texts', f'{lang}.txt'), 'r', encoding='utf-8') as f:
for line in f:
path = Path(root, 'bible_audios', lang, f'{i}.wav')
if path.exists():
path_to_transcript[str(path)] = line.strip()
i += 1
return path_to_transcript
if __name__ == '__main__':
pass