MassivelyMultilingualTTS / Architectures /Vocoder /Avocodo_Discriminators.py
Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
10.3 kB
"""
MIT licensed code taken and adapted from https://github.com/rishikksh20/Avocodo-pytorch
Copyright (c) 2022 Rishikesh (ऋषिकेश)
adapted 2022, Florian Lux
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import signal as sig
from torch.nn import Conv1d
from torch.nn.utils import spectral_norm
from torch.nn.utils import weight_norm
from Architectures.Vocoder.SAN_modules import SANConv1d
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class MultiCoMBDiscriminator(torch.nn.Module):
def __init__(self, kernels, channels, groups, strides):
super(MultiCoMBDiscriminator, self).__init__()
self.combd_1 = CoMBD(filters=channels, kernels=kernels[0], groups=groups, strides=strides)
self.combd_2 = CoMBD(filters=channels, kernels=kernels[1], groups=groups, strides=strides)
self.combd_3 = CoMBD(filters=channels, kernels=kernels[2], groups=groups, strides=strides)
self.pqmf_2 = PQMF(N=2, taps=256, cutoff=0.25, beta=10.0)
self.pqmf_4 = PQMF(N=8, taps=192, cutoff=0.13, beta=10.0)
def forward(self, wave_final, intermediate_wave_upsampled_twice=None, intermediate_wave_upsampled_once=None, discriminator_train_flag=False):
if intermediate_wave_upsampled_twice is not None and intermediate_wave_upsampled_once is not None:
# get features of generated wave
features_of_predicted = []
out3, p3_fmap_hat = self.combd_3(wave_final, discriminator_train_flag)
features_of_predicted = features_of_predicted + p3_fmap_hat
x2_hat_ = self.pqmf_2(wave_final)[:, :1, :]
x1_hat_ = self.pqmf_4(wave_final)[:, :1, :]
out2, p2_fmap_hat_ = self.combd_2(intermediate_wave_upsampled_twice, discriminator_train_flag)
features_of_predicted = features_of_predicted + p2_fmap_hat_
out1, p1_fmap_hat_ = self.combd_1(intermediate_wave_upsampled_once, discriminator_train_flag)
features_of_predicted = features_of_predicted + p1_fmap_hat_
out22, p2_fmap_hat = self.combd_2(x2_hat_, discriminator_train_flag)
features_of_predicted = features_of_predicted + p2_fmap_hat
out12, p1_fmap_hat = self.combd_1(x1_hat_, discriminator_train_flag)
features_of_predicted = features_of_predicted + p1_fmap_hat
return [out1, out12, out2, out22, out3], features_of_predicted
else:
# get features of gold wave
features_of_gold = []
out3, p3_fmap = self.combd_3(wave_final, discriminator_train_flag)
features_of_gold = features_of_gold + p3_fmap
x2_ = self.pqmf_2(wave_final)[:, :1, :] # Select first band
x1_ = self.pqmf_4(wave_final)[:, :1, :] # Select first band
out2, p2_fmap_ = self.combd_2(x2_, discriminator_train_flag)
features_of_gold = features_of_gold + p2_fmap_
out1, p1_fmap_ = self.combd_1(x1_, discriminator_train_flag)
features_of_gold = features_of_gold + p1_fmap_
out22, p2_fmap = self.combd_2(x2_, discriminator_train_flag)
features_of_gold = features_of_gold + p2_fmap
out12, p1_fmap = self.combd_1(x1_, discriminator_train_flag)
features_of_gold = features_of_gold + p1_fmap
return [out1, out12, out2, out22, out3], features_of_gold
class MultiSubBandDiscriminator(torch.nn.Module):
def __init__(self,
tkernels,
fkernel,
tchannels,
fchannels,
tstrides,
fstride,
tdilations,
fdilations,
tsubband,
n,
m,
freq_init_ch):
super(MultiSubBandDiscriminator, self).__init__()
self.fsbd = SubBandDiscriminator(init_channel=freq_init_ch, channels=fchannels, kernel=fkernel,
strides=fstride, dilations=fdilations)
self.tsubband1 = tsubband[0]
self.tsbd1 = SubBandDiscriminator(init_channel=self.tsubband1, channels=tchannels, kernel=tkernels[0],
strides=tstrides[0], dilations=tdilations[0])
self.tsubband2 = tsubband[1]
self.tsbd2 = SubBandDiscriminator(init_channel=self.tsubband2, channels=tchannels, kernel=tkernels[1],
strides=tstrides[1], dilations=tdilations[1])
self.tsubband3 = tsubband[2]
self.tsbd3 = SubBandDiscriminator(init_channel=self.tsubband3, channels=tchannels, kernel=tkernels[2],
strides=tstrides[2], dilations=tdilations[2])
self.pqmf_n = PQMF(N=n, taps=256, cutoff=0.03, beta=10.0)
self.pqmf_m = PQMF(N=m, taps=256, cutoff=0.1, beta=9.0)
def forward(self, wave, discriminator_train_flag):
fmap_hat = []
# Time analysis
xn_hat = self.pqmf_n(wave)
q3_hat, feat_q3_hat = self.tsbd3(xn_hat[:, :self.tsubband3, :], discriminator_train_flag)
fmap_hat = fmap_hat + feat_q3_hat
q2_hat, feat_q2_hat = self.tsbd2(xn_hat[:, :self.tsubband2, :], discriminator_train_flag)
fmap_hat = fmap_hat + feat_q2_hat
q1_hat, feat_q1_hat = self.tsbd1(xn_hat[:, :self.tsubband1, :], discriminator_train_flag)
fmap_hat = fmap_hat + feat_q1_hat
# Frequency analysis
xm_hat = self.pqmf_m(wave)
xm_hat = xm_hat.transpose(-2, -1)
q4_hat, feat_q4_hat = self.fsbd(xm_hat, discriminator_train_flag)
fmap_hat = fmap_hat + feat_q4_hat
return [q1_hat, q2_hat, q3_hat, q4_hat], fmap_hat
class CoMBD(torch.nn.Module):
def __init__(self, filters, kernels, groups, strides, use_spectral_norm=False):
super(CoMBD, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList()
init_channel = 1
for i, (f, k, g, s) in enumerate(zip(filters, kernels, groups, strides)):
self.convs.append(norm_f(Conv1d(init_channel, f, k, s, padding=get_padding(k, 1), groups=g)))
init_channel = f
self.conv_post = norm_f(SANConv1d(filters[-1], 1, 3, 1, padding=get_padding(3, 1)))
def forward(self, x, discriminator_train_flag):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, 0.1)
fmap.append(x)
x = self.conv_post(x, discriminator_train_flag)
# fmap.append(x)
return x, fmap
class MDC(torch.nn.Module):
def __init__(self, in_channel, channel, kernel, stride, dilations, use_spectral_norm=False):
super(MDC, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = torch.nn.ModuleList()
self.num_dilations = len(dilations)
for d in dilations:
self.convs.append(norm_f(Conv1d(in_channel, channel, kernel, stride=1, padding=get_padding(kernel, d),
dilation=d)))
self.conv_out = norm_f(SANConv1d(channel, channel, 3, stride=stride, padding=get_padding(3, 1)))
def forward(self, x):
xs = None
for l in self.convs:
if xs is None:
xs = l(x)
else:
xs += l(x)
x = xs / self.num_dilations
x = self.conv_out(x)
x = F.leaky_relu(x, 0.1)
return x
class SubBandDiscriminator(torch.nn.Module):
def __init__(self, init_channel, channels, kernel, strides, dilations, use_spectral_norm=False):
super(SubBandDiscriminator, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.mdcs = torch.nn.ModuleList()
for channel, stride, dilation in zip(channels, strides, dilations):
self.mdcs.append(MDC(init_channel, channel, kernel, stride, dilation))
init_channel = channel # output channel of this layer becomes input channel of next layer
self.conv_post = norm_f(SANConv1d(init_channel, 1, 3, padding=get_padding(3, 1)))
def forward(self, x, discriminator_train_flag):
fmap = []
for l in self.mdcs:
x = l(x)
fmap.append(x)
x = self.conv_post(x, discriminator_train_flag)
# fmap.append(x)
return x, fmap
# adapted from
# https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan
class PQMF(torch.nn.Module):
def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0):
super(PQMF, self).__init__()
self.N = N
self.taps = taps
self.cutoff = cutoff
self.beta = beta
QMF = sig.firwin(taps + 1, cutoff, window=('kaiser', beta))
H = np.zeros((N, len(QMF)))
G = np.zeros((N, len(QMF)))
for k in range(N):
constant_factor = (2 * k + 1) * (np.pi /
(2 * N)) * (np.arange(taps + 1) -
((taps - 1) / 2)) # TODO: (taps - 1) -> taps
phase = (-1) ** k * np.pi / 4
H[k] = 2 * QMF * np.cos(constant_factor + phase)
G[k] = 2 * QMF * np.cos(constant_factor - phase)
H = torch.from_numpy(H[:, None, :]).float()
G = torch.from_numpy(G[None, :, :]).float()
self.register_buffer("H", H)
self.register_buffer("G", G)
updown_filter = torch.zeros((N, N, N)).float()
for k in range(N):
updown_filter[k, k, 0] = 1.0
self.register_buffer("updown_filter", updown_filter)
self.N = N
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
def forward(self, x):
return self.analysis(x)
def analysis(self, x):
return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N)
def synthesis(self, x):
x = F.conv_transpose1d(x,
self.updown_filter * self.N,
stride=self.N)
x = F.conv1d(x, self.G, padding=self.taps // 2)
return x