Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
1.71 kB
import torch
import torch.multiprocessing
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from Utility.utils import make_non_pad_mask
class Reconstructor(torch.nn.Module):
def __init__(self,
n_features=128,
num_symbols=145,
speaker_embedding_dim=192,
lstm_dim=256):
super().__init__()
self.in_proj = torch.nn.Linear(num_symbols + speaker_embedding_dim, lstm_dim)
self.rnn1 = torch.nn.LSTM(lstm_dim, lstm_dim, batch_first=True, bidirectional=True)
self.rnn2 = torch.nn.LSTM(2 * lstm_dim, lstm_dim, batch_first=True, bidirectional=True)
self.out_proj = torch.nn.Linear(2 * lstm_dim, n_features)
self.l1_criterion = torch.nn.L1Loss(reduction="none")
self.l2_criterion = torch.nn.MSELoss(reduction="none")
def forward(self, x, lens, ys):
x = self.in_proj(x)
x = pack_padded_sequence(x, lens.cpu(), batch_first=True, enforce_sorted=False)
x, _ = self.rnn1(x)
x, _ = self.rnn2(x)
x, _ = pad_packed_sequence(x, batch_first=True)
x = self.out_proj(x)
out_masks = make_non_pad_mask(lens).unsqueeze(-1).to(ys.device)
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
out_weights /= ys.size(0) * ys.size(2)
l1_loss = self.l1_criterion(x, ys).mul(out_weights).masked_select(out_masks).sum()
l2_loss = self.l2_criterion(x, ys).mul(out_weights).masked_select(out_masks).sum()
return l1_loss + l2_loss
if __name__ == '__main__':
print(sum(p.numel() for p in Reconstructor().parameters() if p.requires_grad))