Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
25.8 kB
import torch
from torch.nn import Linear
from torch.nn import Sequential
from torch.nn import Tanh
from Architectures.GeneralLayers.Conformer import Conformer
from Architectures.GeneralLayers.LengthRegulator import LengthRegulator
from Architectures.ToucanTTS.Glow import Glow
from Architectures.ToucanTTS.StochasticToucanTTS.StochasticToucanTTSLoss import StochasticToucanTTSLoss
from Architectures.ToucanTTS.StochasticToucanTTS.StochasticVariancePredictor import StochasticVariancePredictor
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Utility.utils import initialize
from Utility.utils import make_non_pad_mask
from Utility.utils import make_pad_mask
class StochasticToucanTTS(torch.nn.Module):
"""
StochasticToucanTTS module, which is mostly just a FastSpeech 2 module,
but with lots of designs from different architectures accumulated
and some major components added to put a large focus on multilinguality.
Original contributions:
- Inputs are configurations of the articulatory tract
- Word boundaries are modeled explicitly in the encoder end removed before the decoder
- Speaker embedding conditioning is derived from GST and Adaspeech 4
- Responsiveness of variance predictors to utterance embedding is increased through conditional layer norm
- The final output receives a GAN discriminator feedback signal
- Stochastic Duration Prediction through a normalizing flow
- Stochastic Pitch Prediction through a normalizing flow
- Stochastic Energy prediction through a normalizing flow
Contributions inspired from elsewhere:
- The PostNet is also a normalizing flow, like in PortaSpeech
- Pitch and energy values are averaged per-phone, as in FastPitch to enable great controllability
- The encoder and decoder are Conformers
"""
def __init__(self,
# network structure related
input_feature_dimensions=62,
output_spectrogram_channels=80,
attention_dimension=192,
attention_heads=4,
positionwise_conv_kernel_size=1,
use_scaled_positional_encoding=True,
init_type="xavier_uniform",
use_macaron_style_in_conformer=True,
use_cnn_in_conformer=True,
# encoder
encoder_layers=6,
encoder_units=1536,
encoder_normalize_before=True,
encoder_concat_after=False,
conformer_encoder_kernel_size=7,
transformer_enc_dropout_rate=0.2,
transformer_enc_positional_dropout_rate=0.2,
transformer_enc_attn_dropout_rate=0.2,
# decoder
decoder_layers=6,
decoder_units=1536,
decoder_concat_after=False,
conformer_decoder_kernel_size=31,
decoder_normalize_before=True,
transformer_dec_dropout_rate=0.2,
transformer_dec_positional_dropout_rate=0.2,
transformer_dec_attn_dropout_rate=0.2,
# duration predictor
duration_predictor_layers=3,
duration_predictor_chans=256,
duration_predictor_kernel_size=3,
duration_predictor_dropout_rate=0.2,
# pitch predictor
pitch_embed_kernel_size=1,
pitch_embed_dropout=0.0,
# energy predictor
energy_embed_kernel_size=1,
energy_embed_dropout=0.0,
# additional features
utt_embed_dim=192,
lang_embs=8000):
super().__init__()
self.input_feature_dimensions = input_feature_dimensions
self.output_spectrogram_channels = output_spectrogram_channels
self.attention_dimension = attention_dimension
self.use_scaled_pos_enc = use_scaled_positional_encoding
self.multilingual_model = lang_embs is not None
self.multispeaker_model = utt_embed_dim is not None
articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension))
self.encoder = Conformer(conformer_type="encoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=encoder_units,
num_blocks=encoder_layers,
input_layer=articulatory_feature_embedding,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_encoder_kernel_size,
zero_triu=False,
utt_embed=utt_embed_dim,
lang_embs=lang_embs,
use_output_norm=True)
self.duration_flow = StochasticVariancePredictor(in_channels=attention_dimension,
kernel_size=3,
p_dropout=0.5,
n_flows=5,
conditioning_signal_channels=utt_embed_dim)
self.pitch_flow = StochasticVariancePredictor(in_channels=attention_dimension,
kernel_size=5,
p_dropout=0.5,
n_flows=6,
conditioning_signal_channels=utt_embed_dim)
self.energy_flow = StochasticVariancePredictor(in_channels=attention_dimension,
kernel_size=3,
p_dropout=0.5,
n_flows=3,
conditioning_signal_channels=utt_embed_dim)
self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1,
out_channels=attention_dimension,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2),
torch.nn.Dropout(pitch_embed_dropout))
self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2),
torch.nn.Dropout(energy_embed_dropout))
self.length_regulator = LengthRegulator()
self.decoder = Conformer(conformer_type="decoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=decoder_units,
num_blocks=decoder_layers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_decoder_kernel_size,
use_output_norm=False,
utt_embed=utt_embed_dim)
self.feat_out = Linear(attention_dimension, output_spectrogram_channels)
self.post_flow = Glow(
in_channels=output_spectrogram_channels,
hidden_channels=192, # post_glow_hidden
kernel_size=3, # post_glow_kernel_size
dilation_rate=1,
n_blocks=12, # post_glow_n_blocks (original 12 in paper)
n_layers=3, # post_glow_n_block_layers (original 3 in paper)
n_split=4,
n_sqz=2,
text_condition_channels=attention_dimension,
share_cond_layers=False, # post_share_cond_layers
share_wn_layers=4,
sigmoid_scale=False,
condition_integration_projection=torch.nn.Conv1d(output_spectrogram_channels + attention_dimension, attention_dimension, 5, padding=2)
)
# initialize parameters
self._reset_parameters(init_type=init_type)
if lang_embs is not None:
torch.nn.init.normal_(self.encoder.language_embedding.weight, mean=0, std=attention_dimension ** -0.5)
self.criterion = StochasticToucanTTSLoss()
def forward(self,
text_tensors,
text_lengths,
gold_speech,
speech_lengths,
gold_durations,
gold_pitch,
gold_energy,
utterance_embedding,
return_feats=False,
lang_ids=None,
run_glow=True
):
"""
Args:
return_feats (Boolean): whether to return the predicted spectrogram
text_tensors (LongTensor): Batch of padded text vectors (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input (B,).
gold_speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
gold_durations (LongTensor): Batch of padded durations (B, Tmax + 1).
gold_pitch (Tensor): Batch of padded token-averaged pitch (B, Tmax + 1, 1).
gold_energy (Tensor): Batch of padded token-averaged energy (B, Tmax + 1, 1).
run_glow (Boolean): Whether to run the PostNet. There should be a warmup phase in the beginning.
lang_ids (LongTensor): The language IDs used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Batch of embeddings to condition the TTS on, if the model is multispeaker
"""
before_outs, \
after_outs, \
duration_loss, \
pitch_loss, \
energy_loss, \
glow_loss = self._forward(text_tensors=text_tensors,
text_lengths=text_lengths,
gold_speech=gold_speech,
speech_lengths=speech_lengths,
gold_durations=gold_durations,
gold_pitch=gold_pitch,
gold_energy=gold_energy,
utterance_embedding=utterance_embedding,
is_inference=False,
lang_ids=lang_ids,
run_glow=run_glow)
# calculate loss
l1_loss = self.criterion(after_outs=after_outs,
before_outs=before_outs,
gold_spectrograms=gold_speech,
spectrogram_lengths=speech_lengths,
text_lengths=text_lengths)
if return_feats:
if after_outs is None:
after_outs = before_outs
return l1_loss, duration_loss, pitch_loss, energy_loss, glow_loss, after_outs
return l1_loss, duration_loss, pitch_loss, energy_loss, glow_loss
def _forward(self,
text_tensors,
text_lengths,
gold_speech=None,
speech_lengths=None,
gold_durations=None,
gold_pitch=None,
gold_energy=None,
is_inference=False,
utterance_embedding=None,
lang_ids=None,
run_glow=True):
if not self.multilingual_model:
lang_ids = None
if not self.multispeaker_model:
utterance_embedding = None
# encoding the texts
text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2)
padding_masks = make_pad_mask(text_lengths, device=text_lengths.device)
encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids)
if is_inference:
variance_mask = torch.ones(size=[text_tensors.size(1)], device=text_tensors.device)
# predicting pitch
pitch_predictions = self.pitch_flow(encoded_texts.transpose(1, 2), variance_mask, w=None, g=utterance_embedding.unsqueeze(-1), reverse=True).squeeze(-1).transpose(1, 2)
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
if phoneme_vector[get_feature_to_index_lookup()["voiced"]] == 0:
pitch_predictions[0][phoneme_index] = 0.0
embedded_pitch_curve = self.pitch_embed(pitch_predictions.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_pitch_curve
# predicting energy
energy_predictions = self.energy_flow(encoded_texts.transpose(1, 2), variance_mask, w=None, g=utterance_embedding.unsqueeze(-1), reverse=True).squeeze(-1).transpose(1, 2)
embedded_energy_curve = self.energy_embed(energy_predictions.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_energy_curve
# predicting durations
predicted_durations = self.duration_flow(encoded_texts.transpose(1, 2), variance_mask, w=None, g=utterance_embedding.unsqueeze(-1), reverse=True).squeeze(-1).transpose(1, 2).squeeze(-1)
predicted_durations = torch.ceil(torch.exp(predicted_durations)).long()
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1:
predicted_durations[0][phoneme_index] = 0
# predicting durations for text and upsampling accordingly
upsampled_enriched_encoded_texts = self.length_regulator(encoded_texts, predicted_durations)
else:
# learning to predict pitch
idx = gold_pitch != 0
pitch_mask = torch.logical_and(text_masks, idx.transpose(1, 2))
scaled_pitch_targets = gold_pitch.detach().clone()
scaled_pitch_targets[idx] = torch.exp(gold_pitch[idx]) # we scale up, so that the log in the flow can handle the value ranges better.
pitch_flow_loss = torch.sum(self.pitch_flow(encoded_texts.transpose(1, 2).detach(), pitch_mask, w=scaled_pitch_targets.transpose(1, 2), g=utterance_embedding.unsqueeze(-1), reverse=False))
pitch_flow_loss = torch.sum(pitch_flow_loss / torch.sum(pitch_mask)) # weighted masking
embedded_pitch_curve = self.pitch_embed(gold_pitch.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_pitch_curve
# learning to predict energy
idx = gold_energy != 0
energy_mask = torch.logical_and(text_masks, idx.transpose(1, 2))
scaled_energy_targets = gold_energy.detach().clone()
scaled_energy_targets[idx] = torch.exp(gold_energy[idx]) # we scale up, so that the log in the flow can handle the value ranges better.
energy_flow_loss = torch.sum(self.energy_flow(encoded_texts.transpose(1, 2).detach(), energy_mask, w=scaled_energy_targets.transpose(1, 2), g=utterance_embedding.unsqueeze(-1), reverse=False))
energy_flow_loss = torch.sum(energy_flow_loss / torch.sum(energy_mask)) # weighted masking
embedded_energy_curve = self.energy_embed(gold_energy.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_energy_curve
# learning to predict durations
idx = gold_durations.unsqueeze(-1) != 0
duration_mask = torch.logical_and(text_masks, idx.transpose(1, 2))
duration_targets = gold_durations.unsqueeze(-1).detach().clone().float()
duration_flow_loss = torch.sum(self.duration_flow(encoded_texts.transpose(1, 2).detach(), duration_mask, w=duration_targets.transpose(1, 2), g=utterance_embedding.unsqueeze(-1), reverse=False))
duration_flow_loss = torch.sum(duration_flow_loss / torch.sum(duration_mask)) # weighted masking
upsampled_enriched_encoded_texts = self.length_regulator(encoded_texts, gold_durations)
# decoding spectrogram
decoder_masks = make_non_pad_mask(speech_lengths, device=speech_lengths.device).unsqueeze(-2) if speech_lengths is not None and not is_inference else None
decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, decoder_masks, utterance_embedding=utterance_embedding)
decoded_spectrogram = self.feat_out(decoded_speech).view(decoded_speech.size(0), -1, self.output_spectrogram_channels)
# refine spectrogram further with a normalizing flow (requires warmup, so it's not always on)
glow_loss = None
if run_glow:
if is_inference:
refined_spectrogram = self.post_flow(tgt_mels=None,
infer=is_inference,
mel_out=decoded_spectrogram,
encoded_texts=upsampled_enriched_encoded_texts,
tgt_nonpadding=None).squeeze()
else:
glow_loss = self.post_flow(tgt_mels=gold_speech,
infer=is_inference,
mel_out=decoded_spectrogram.detach().clone(),
encoded_texts=upsampled_enriched_encoded_texts.detach().clone(),
tgt_nonpadding=decoder_masks)
if is_inference:
return decoded_spectrogram.squeeze(), \
refined_spectrogram.squeeze(), \
predicted_durations.squeeze(), \
pitch_predictions.squeeze(), \
energy_predictions.squeeze()
else:
return decoded_spectrogram, \
None, \
duration_flow_loss, \
pitch_flow_loss, \
energy_flow_loss, \
glow_loss
@torch.inference_mode()
def inference(self,
text,
speech=None,
utterance_embedding=None,
return_duration_pitch_energy=False,
lang_id=None,
run_postflow=True):
"""
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
return_duration_pitch_energy (Boolean): whether to return the list of predicted durations for nicer plotting
run_postflow (Boolean): Whether to run the PostNet. There should be a warmup phase in the beginning.
lang_id (LongTensor): The language ID used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Embedding to condition the TTS on, if the model is multispeaker
"""
self.eval()
x, y = text, speech
# setup batch axis
ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device)
xs, ys = x.unsqueeze(0), None
if y is not None:
ys = y.unsqueeze(0)
if lang_id is not None:
lang_id = lang_id.unsqueeze(0)
utterance_embeddings = utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None
before_outs, \
after_outs, \
duration_predictions, \
pitch_predictions, \
energy_predictions = self._forward(xs,
ilens,
ys,
is_inference=True,
utterance_embedding=utterance_embeddings,
lang_ids=lang_id,
run_glow=run_postflow) # (1, L, odim)
self.train()
if after_outs is None:
after_outs = before_outs
if return_duration_pitch_energy:
return before_outs, after_outs, duration_predictions, pitch_predictions, energy_predictions
return after_outs
def _reset_parameters(self, init_type):
# initialize parameters
if init_type != "pytorch":
initialize(self, init_type)
if __name__ == '__main__':
print(sum(p.numel() for p in StochasticToucanTTS().parameters() if p.requires_grad))
print(" TESTING TRAINING ")
print(" batchsize 3 ")
dummy_text_batch = torch.randint(low=0, high=2, size=[3, 3, 62]).float() # [Batch, Sequence Length, Features per Phone]
dummy_text_lens = torch.LongTensor([2, 3, 3])
dummy_speech_batch = torch.randn([3, 30, 80]) # [Batch, Sequence Length, Spectrogram Buckets]
dummy_speech_lens = torch.LongTensor([10, 30, 20])
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5], [5, 5, 10]])
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_utterance_embed = torch.randn([3, 192]) # [Batch, Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([5, 3, 2]).unsqueeze(1)
model = StochasticToucanTTS()
l1, dl, pl, el, gl = model(dummy_text_batch,
dummy_text_lens,
dummy_speech_batch,
dummy_speech_lens,
dummy_durations,
dummy_pitch,
dummy_energy,
utterance_embedding=dummy_utterance_embed,
lang_ids=dummy_language_id)
loss = l1 + gl + dl + pl + el
print(loss)
loss.backward()
# from Utility.utils import plot_grad_flow
# plot_grad_flow(model.encoder.named_parameters())
# plot_grad_flow(model.decoder.named_parameters())
# plot_grad_flow(model.pitch_predictor.named_parameters())
# plot_grad_flow(model.duration_predictor.named_parameters())
# plot_grad_flow(model.post_flow.named_parameters())
print(" batchsize 2 ")
dummy_text_batch = torch.randint(low=0, high=2, size=[2, 3, 62]).float() # [Batch, Sequence Length, Features per Phone]
dummy_text_lens = torch.LongTensor([2, 3])
dummy_speech_batch = torch.randn([2, 30, 80]) # [Batch, Sequence Length, Spectrogram Buckets]
dummy_speech_lens = torch.LongTensor([10, 30])
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5]])
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]]])
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]]])
dummy_utterance_embed = torch.randn([2, 192]) # [Batch, Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([5, 3]).unsqueeze(1)
model = StochasticToucanTTS()
l1, dl, pl, el, gl = model(dummy_text_batch,
dummy_text_lens,
dummy_speech_batch,
dummy_speech_lens,
dummy_durations,
dummy_pitch,
dummy_energy,
utterance_embedding=dummy_utterance_embed,
lang_ids=dummy_language_id)
loss = l1 + gl + dl + el + pl
print(loss)
loss.backward()
print(" TESTING INFERENCE ")
dummy_text_batch = torch.randint(low=0, high=2, size=[12, 62]).float() # [Sequence Length, Features per Phone]
dummy_utterance_embed = torch.randn([192]) # [Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([2])
print(StochasticToucanTTS().inference(dummy_text_batch,
utterance_embedding=dummy_utterance_embed,
lang_id=dummy_language_id).shape)