MassivelyMultilingualTTS / Architectures /ToucanTTS /toucantts_meta_train_loop.py
Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
19.9 kB
import torch.multiprocessing
import wandb
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from Architectures.ToucanTTS.LanguageEmbeddingSpaceStructureLoss import LanguageEmbeddingSpaceStructureLoss
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from Preprocessing.EnCodecAudioPreprocessor import CodecAudioPreprocessor
from Utility.WarmupScheduler import ToucanWarmupScheduler as WarmupScheduler
from Utility.path_to_transcript_dicts import *
from Utility.utils import delete_old_checkpoints
from Utility.utils import get_most_recent_checkpoint
from Utility.utils import plot_progress_spec_toucantts
from run_weight_averaging import average_checkpoints
from run_weight_averaging import get_n_recent_checkpoints_paths
from run_weight_averaging import load_net_toucan
from run_weight_averaging import save_model_for_use
def collate_and_pad(batch):
# text, text_len, speech, speech_len, durations, energy, pitch, utterance condition, language_id
return (pad_sequence([datapoint[0] for datapoint in batch], batch_first=True).float(),
torch.stack([datapoint[1] for datapoint in batch]).squeeze(1),
[datapoint[2] for datapoint in batch],
torch.stack([datapoint[3] for datapoint in batch]).squeeze(1),
pad_sequence([datapoint[4].squeeze() for datapoint in batch], batch_first=True),
pad_sequence([datapoint[5].squeeze() for datapoint in batch], batch_first=True),
pad_sequence([datapoint[6].squeeze() for datapoint in batch], batch_first=True),
None,
torch.stack([datapoint[8] for datapoint in batch]),
torch.stack([datapoint[9] for datapoint in batch]))
def train_loop(net,
datasets,
device,
save_directory,
batch_size,
steps,
steps_per_checkpoint,
lr,
path_to_checkpoint,
lang,
resume,
fine_tune,
warmup_steps,
use_wandb,
train_samplers,
gpu_count,
use_less_loss,
):
"""
see train loop arbiter for explanations of the arguments
"""
net = net.to(device)
if steps_per_checkpoint is None:
steps_per_checkpoint = 1000
if steps % steps_per_checkpoint == 0:
steps = steps + 1
else:
steps = steps + ((steps_per_checkpoint + 1) - (steps % steps_per_checkpoint)) # making sure to stop at the closest point that makes sense to the specified stopping point
if steps < warmup_steps * 5:
print(f"too much warmup given the amount of steps, reducing warmup to {warmup_steps} steps")
warmup_steps = steps // 5
if use_less_loss:
less_loss = LanguageEmbeddingSpaceStructureLoss()
pretrained_language_codes = ['eng', 'deu', 'fra', 'spa', 'cmn', 'por', 'pol', 'ita', 'nld', 'ell', 'fin', 'vie', 'rus', 'hun', 'bem', 'swh', 'amh', 'wol', 'mal', 'chv', 'iba', 'jav', 'fon', 'hau', 'lbb', 'kik', 'lin', 'lug', 'luo', 'sxb', 'yor', 'nya', 'loz', 'toi', 'afr', 'arb', 'asm', 'ast', 'azj', 'bel', 'bul', 'ben', 'bos', 'cat', 'ceb', 'sdh',
'ces', 'cym', 'dan', 'ekk', 'pes', 'fil', 'gle', 'glg', 'guj', 'heb', 'hin', 'hrv', 'hye', 'ind', 'ibo', 'isl', 'kat', 'kam', 'kea', 'kaz', 'khm', 'kan', 'kor', 'ltz', 'lao', 'lit', 'lvs', 'mri', 'mkd', 'xng', 'mar', 'zsm', 'mlt', 'oci', 'ory', 'pan', 'pst', 'ron', 'snd', 'slk', 'slv', 'sna', 'som', 'srp', 'swe', 'tam',
'tel', 'tgk', 'tur', 'ukr', 'umb', 'urd', 'uzn', 'bhd', 'kfs', 'dgo', 'gbk', 'bgc', 'xnr', 'kfx', 'mjl', 'bfz', 'acf', 'bss', 'inb', 'nca', 'quh', 'wap', 'acr', 'bus', 'dgr', 'maz', 'nch', 'qul', 'tav', 'wmw', 'acu', 'byr', 'dik', 'iou', 'mbb', 'ncj', 'qvc', 'tbc', 'xed', 'agd', 'bzh', 'djk', 'ipi', 'mbc', 'ncl', 'qve',
'tbg', 'xon', 'agg', 'bzj', 'dop', 'jac', 'mbh', 'ncu', 'qvh', 'tbl', 'xtd', 'agn', 'caa', 'jic', 'mbj', 'ndj', 'qvm', 'tbz', 'xtm', 'agr', 'cab', 'emp', 'jiv', 'mbt', 'nfa', 'qvn', 'tca', 'yaa', 'agu', 'cap', 'jvn', 'mca', 'ngp', 'qvs', 'tcs', 'yad', 'aia', 'car', 'ese', 'mcb', 'ngu', 'qvw', 'yal', 'cax', 'kaq', 'mcd',
'nhe', 'qvz', 'tee', 'ycn', 'ake', 'cbc', 'far', 'mco', 'qwh', 'yka', 'alp', 'cbi', 'kdc', 'mcp', 'nhu', 'qxh', 'ame', 'cbr', 'gai', 'kde', 'mcq', 'nhw', 'qxn', 'tew', 'yre', 'amf', 'cbs', 'gam', 'kdl', 'mdy', 'nhy', 'qxo', 'tfr', 'yva', 'amk', 'cbt', 'geb', 'kek', 'med', 'nin', 'rai', 'zaa', 'apb', 'cbu', 'glk', 'ken',
'mee', 'nko', 'rgu', 'zab', 'apr', 'cbv', 'meq', 'tgo', 'zac', 'arl', 'cco', 'gng', 'kje', 'met', 'nlg', 'rop', 'tgp', 'zad', 'grc', 'klv', 'mgh', 'nnq', 'rro', 'zai', 'ata', 'cek', 'gub', 'kmu', 'mib', 'noa', 'ruf', 'tna', 'zam', 'atb', 'cgc', 'guh', 'kne', 'mie', 'not', 'rug', 'tnk', 'zao', 'atg', 'chf', 'knf', 'mih',
'npl', 'tnn', 'zar', 'awb', 'chz', 'gum', 'knj', 'mil', 'sab', 'tnp', 'zas', 'cjo', 'guo', 'ksr', 'mio', 'obo', 'seh', 'toc', 'zav', 'azg', 'cle', 'gux', 'kue', 'mit', 'omw', 'sey', 'tos', 'zaw', 'azz', 'cme', 'gvc', 'kvn', 'miz', 'ood', 'sgb', 'tpi', 'zca', 'bao', 'cni', 'gwi', 'kwd', 'mkl', 'shp', 'tpt', 'zga', 'bba',
'cnl', 'gym', 'kwf', 'mkn', 'ote', 'sja', 'trc', 'ziw', 'bbb', 'cnt', 'gyr', 'kwi', 'mop', 'otq', 'snn', 'ttc', 'zlm', 'cof', 'hat', 'kyc', 'mox', 'pab', 'snp', 'tte', 'zos', 'bgt', 'con', 'kyf', 'mpm', 'pad', 'tue', 'zpc', 'bjr', 'cot', 'kyg', 'mpp', 'soy', 'tuf', 'zpl', 'bjv', 'cpa', 'kyq', 'mpx', 'pao', 'tuo', 'zpm',
'bjz', 'cpb', 'hlt', 'kyz', 'mqb', 'pib', 'spp', 'zpo', 'bkd', 'cpu', 'hns', 'lac', 'mqj', 'pir', 'spy', 'txq', 'zpu', 'blz', 'crn', 'hto', 'lat', 'msy', 'pjt', 'sri', 'txu', 'zpz', 'bmr', 'cso', 'hub', 'lex', 'mto', 'pls', 'srm', 'udu', 'ztq', 'bmu', 'ctu', 'lgl', 'muy', 'poi', 'srn', 'zty', 'bnp', 'cuc', 'lid', 'mxb',
'stp', 'upv', 'zyp', 'boa', 'cui', 'huu', 'mxq', 'sus', 'ura', 'boj', 'cuk', 'huv', 'llg', 'mxt', 'poy', 'suz', 'urb', 'box', 'cwe', 'hvn', 'prf', 'urt', 'bpr', 'cya', 'ign', 'lww', 'myk', 'ptu', 'usp', 'bps', 'daa', 'ikk', 'maj', 'myy', 'vid', 'bqc', 'dah', 'nab', 'qub', 'tac', 'bqp', 'ded', 'imo', 'maq', 'nas', 'quf',
'taj', 'vmy']
pretrained_language_ids = list() # an alternative to the valid_language_ids
for language_code in pretrained_language_codes:
pretrained_language_ids.append(less_loss.iso_codes_to_ids[language_code])
# there are 7233 language IDs, but there are a few illegal ones: "ajp", "ajt", "en-sc", "en-us", "fr-be", "fr-sw", "lak", "lno", "nul", "pii", "plj", "pt-br", "slq", "smd", "snb", "spa-lat", "tpw", "vi-ctr", "vi-so", "wya", "zua"
valid_language_ids = list(less_loss.ids_to_iso_codes.keys())
for illegal_lang in ["ajp", "ajt", "en-sc", "en-us", "fr-be", "fr-sw", "lak", "lno", "nul", "pii", "plj", "pt-br", "slq", "smd", "snb", "spa-lat", "tpw", "vi-ctr", "vi-so", "wya", "zua"]:
remove_id = less_loss.iso_codes_to_ids[illegal_lang]
valid_language_ids.remove(remove_id)
if isinstance(net, torch.nn.parallel.DistributedDataParallel):
model = net.module
else:
model = net
torch.multiprocessing.set_sharing_strategy('file_system')
train_loaders = list()
train_iters = list()
ap = CodecAudioPreprocessor(input_sr=-1, device=device)
spec_extractor = AudioPreprocessor(input_sr=16000, output_sr=16000, device=device)
for dataset, sampler in zip(datasets, train_samplers):
batch_sampler_train = torch.utils.data.BatchSampler(sampler, 1, drop_last=True)
train_loaders.append(DataLoader(dataset=dataset,
batch_sampler=batch_sampler_train,
num_workers=0,
pin_memory=True,
prefetch_factor=None,
collate_fn=lambda x: x[0]))
train_iters.append(iter(train_loaders[-1]))
# embedding training is not supported here
optimizer = torch.optim.Adam([p for name, p in model.named_parameters() if 'post_flow' not in name], lr=lr)
flow_optimizer = torch.optim.Adam(model.post_flow.parameters(), lr=lr)
scheduler = WarmupScheduler(optimizer, peak_lr=lr, warmup_steps=warmup_steps, max_steps=steps)
flow_scheduler = WarmupScheduler(flow_optimizer, peak_lr=lr, warmup_steps=(warmup_steps // 4), max_steps=steps)
steps_run_previously = 0
regression_losses_total = list()
glow_losses_total = list()
duration_losses_total = list()
pitch_losses_total = list()
energy_losses_total = list()
less_losses_total = list()
if resume:
path_to_checkpoint = get_most_recent_checkpoint(checkpoint_dir=save_directory)
if path_to_checkpoint is not None:
check_dict = torch.load(path_to_checkpoint, map_location=device)
model.load_state_dict(check_dict["model"])
if not fine_tune:
optimizer.load_state_dict(check_dict["optimizer"])
scheduler.load_state_dict(check_dict["scheduler"])
flow_optimizer.load_state_dict(check_dict["flow_optimizer"])
flow_scheduler.load_state_dict(check_dict["flow_scheduler"])
steps_run_previously = check_dict["step_counter"]
if steps_run_previously > steps:
print("Desired steps already reached in loaded checkpoint.")
return
net.train()
# =============================
# Actual train loop starts here
# =============================
if not fine_tune and not resume and use_less_loss:
print("Priming the language embedding space...")
less_values = list()
for i in tqdm(range(warmup_steps * 2)):
language_ids = random.sample(valid_language_ids, batch_size)
language_embeddings = model.encoder.language_embedding(torch.LongTensor(language_ids).to(device))
less_value_unsupervised = less_loss(language_ids, language_embeddings)
optimizer.zero_grad()
less_values.append(less_value_unsupervised.item())
less_value_unsupervised.backward()
optimizer.step()
if i % warmup_steps // 2 == 0:
print(sum(less_values) / len(less_values))
less_values = list()
for step_counter in tqdm(range(steps_run_previously, steps)):
run_glow = step_counter > (warmup_steps * 2)
batches = []
while len(batches) < batch_size:
for index in random.sample(list(range(len(datasets))), len(datasets)):
if len(batches) < batch_size:
# we get one batch for each task (i.e. language in this case) in a randomized order
try:
batch = next(train_iters[index])
batches.append(batch)
except StopIteration:
train_iters[index] = iter(train_loaders[index])
batch = next(train_iters[index])
batches.append(batch)
batch = collate_and_pad(batches)
text_tensors = batch[0].to(device)
text_lengths = batch[1].squeeze().to(device)
speech_indexes = batch[2]
speech_lengths = batch[3].squeeze().to(device)
gold_durations = batch[4].to(device)
gold_pitch = batch[6].unsqueeze(-1).to(device) # mind the switched order
gold_energy = batch[5].unsqueeze(-1).to(device) # mind the switched order
lang_ids = batch[8].squeeze(1).to(device)
speech_batch = list() # I wish this could be done in the collate function or in the getitem, but using DL models in multiprocessing on very large datasets causes just way too many issues.
for speech_sample in speech_indexes:
with torch.inference_mode():
wave = ap.indexes_to_audio(speech_sample.int().to(device)).detach()
mel = spec_extractor.audio_to_mel_spec_tensor(wave, explicit_sampling_rate=16000).transpose(0, 1).detach().cpu()
gold_speech_sample = mel.clone()
speech_batch.append(gold_speech_sample)
gold_speech = pad_sequence(speech_batch, batch_first=True).to(device)
train_loss = 0.0
# we sum the loss for each task, as we would do for the
# second order regular MAML, but we do it only over one
# step (i.e. iterations of inner loop = 1)
utterance_embedding = batch[9].to(device)
regression_loss, glow_loss, duration_loss, pitch_loss, energy_loss = net(
text_tensors=text_tensors,
text_lengths=text_lengths,
gold_speech=gold_speech,
speech_lengths=speech_lengths,
gold_durations=gold_durations,
gold_pitch=gold_pitch,
gold_energy=gold_energy,
utterance_embedding=utterance_embedding,
lang_ids=lang_ids,
return_feats=False,
run_glow=run_glow
)
if use_less_loss:
language_embeddings_seen = model.encoder.language_embedding(lang_ids)
language_ids = random.sample(valid_language_ids, batch_size)
language_embeddings_random = model.encoder.language_embedding(torch.LongTensor(language_ids).to(device))
less_value = less_loss(lang_ids.cpu().squeeze().tolist() + language_ids, torch.cat([language_embeddings_seen, language_embeddings_random], dim=0))
# then we directly update our meta-parameters without
# the need for any task specific parameters
if torch.isnan(regression_loss) or torch.isnan(duration_loss) or torch.isnan(pitch_loss) or torch.isnan(energy_loss):
print("One of the losses turned to NaN! Skipping this batch ...")
continue
train_loss = train_loss + regression_loss
train_loss = train_loss + duration_loss
train_loss = train_loss + pitch_loss
train_loss = train_loss + energy_loss
if use_less_loss:
train_loss = train_loss + less_value * 2
if glow_loss is not None: # even if run_glow is true, this can still happen if the log prob cannot be calculated.
if torch.isnan(glow_loss) or torch.isinf(glow_loss):
print("Glow loss turned to NaN! Skipping this batch ...")
continue
train_loss = train_loss + glow_loss
if glow_loss < 0.0:
glow_losses_total.append(glow_loss.item())
else:
glow_losses_total.append(0.1) # just to avoid super large numbers during plotting that mess up the scaling
else:
glow_losses_total.append(0)
regression_losses_total.append(regression_loss.item())
duration_losses_total.append(duration_loss.item())
pitch_losses_total.append(pitch_loss.item())
energy_losses_total.append(energy_loss.item())
if use_less_loss:
less_losses_total.append(less_value.item())
optimizer.zero_grad()
flow_optimizer.zero_grad()
if type(train_loss) is float:
print("There is no loss for this step! Skipping ...")
continue
train_loss.backward()
torch.nn.utils.clip_grad_norm_([p for name, p in model.named_parameters() if 'post_flow' not in name], 1.0, error_if_nonfinite=False)
optimizer.step()
scheduler.step()
if glow_loss is not None:
torch.nn.utils.clip_grad_norm_(model.post_flow.parameters(), 1.0, error_if_nonfinite=False)
flow_optimizer.step()
flow_scheduler.step()
if step_counter % steps_per_checkpoint == 0 and step_counter != 0:
# ==============================
# Enough steps for some insights
# ==============================
if gpu_count > 1:
rank = int(os.environ["LOCAL_RANK"])
else:
rank = 0
if rank == 0:
net.eval()
default_embedding = datasets[0][0][9].to(device)
print("Reconstruction Loss: {}".format(round(sum(regression_losses_total) / len(regression_losses_total), 3)))
print("Steps: {}\n".format(step_counter))
torch.save({
"model" : model.state_dict(),
"optimizer" : optimizer.state_dict(),
"scheduler" : scheduler.state_dict(),
"flow_optimizer": flow_optimizer.state_dict(),
"flow_scheduler": flow_scheduler.state_dict(),
"step_counter" : step_counter,
"default_emb" : default_embedding,
"config" : model.config
},
os.path.join(save_directory, "checkpoint_{}.pt".format(step_counter)))
delete_old_checkpoints(save_directory, keep=5)
if use_wandb:
wandb.log({
"regression_loss" : round(sum(regression_losses_total) / len(regression_losses_total), 5),
"glow_loss" : round(sum(glow_losses_total) / len(glow_losses_total), 5),
"duration_loss" : round(sum(duration_losses_total) / len(duration_losses_total), 5),
"pitch_loss" : round(sum(pitch_losses_total) / len(pitch_losses_total), 5),
"energy_loss" : round(sum(energy_losses_total) / len(energy_losses_total), 5),
"embedding_structure_loss": 0.0 if len(less_losses_total) == 0 else round(sum(less_losses_total) / len(less_losses_total), 5),
"learning_rate" : optimizer.param_groups[0]['lr']
}, step=step_counter)
try:
path_to_most_recent_plot = plot_progress_spec_toucantts(model,
device,
save_dir=save_directory,
step=step_counter,
lang=lang,
default_emb=default_embedding,
run_glow=run_glow)
if use_wandb:
wandb.log({
"progress_plot": wandb.Image(path_to_most_recent_plot)
}, step=step_counter)
except IndexError:
print("generating progress plots failed.")
checkpoint_paths = get_n_recent_checkpoints_paths(checkpoint_dir=save_directory, n=1)
averaged_model, default_embed = average_checkpoints(checkpoint_paths, load_func=load_net_toucan)
save_model_for_use(model=averaged_model, default_embed=default_embed, name=os.path.join(save_directory, "best.pt"))
net.train()
regression_losses_total = list()
glow_losses_total = list()
duration_losses_total = list()
pitch_losses_total = list()
energy_losses_total = list()
less_losses_total = list()