Spaces:
Running
on
T4
Running
on
T4
File size: 15,998 Bytes
9e275b8 ee42912 9e275b8 97bcef9 9e275b8 ee42912 9e275b8 ee42912 9e275b8 4e10cff 9e275b8 4e10cff 9e275b8 ee42912 9e275b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import itertools
import os
import warnings
from typing import cast
import matplotlib.pyplot as plt
import pyloudnorm
import sounddevice
import soundfile
import torch
import spaces
with warnings.catch_warnings():
warnings.simplefilter("ignore")
from speechbrain.pretrained import EncoderClassifier
from torchaudio.transforms import Resample
from Architectures.ToucanTTS.InferenceToucanTTS import ToucanTTS
from Architectures.Vocoder.HiFiGAN_Generator import HiFiGAN
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from Preprocessing.TextFrontend import ArticulatoryCombinedTextFrontend
from Preprocessing.TextFrontend import get_language_id
from Utility.storage_config import MODELS_DIR
from Utility.utils import cumsum_durations
from Utility.utils import float2pcm
class ToucanTTSInterface(torch.nn.Module):
def __init__(self,
device="cpu", # device that everything computes on. If a cuda device is available, this can speed things up by an order of magnitude.
tts_model_path=os.path.join(MODELS_DIR, f"ToucanTTS_Meta", "best.pt"), # path to the ToucanTTS checkpoint or just a shorthand if run standalone
vocoder_model_path=os.path.join(MODELS_DIR, f"Vocoder", "best.pt"), # path to the Vocoder checkpoint
language="eng", # initial language of the model, can be changed later with the setter methods
enhance=None # legacy argument
):
super().__init__()
self.device = device
if not tts_model_path.endswith(".pt"):
# default to shorthand system
tts_model_path = os.path.join(MODELS_DIR, f"ToucanTTS_{tts_model_path}", "best.pt")
################################
# build text to phone #
################################
self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True)
#####################################
# load phone to features model #
#####################################
checkpoint = torch.load(tts_model_path, map_location='cpu')
self.phone2mel = ToucanTTS(weights=checkpoint["model"], config=checkpoint["config"])
with torch.no_grad():
self.phone2mel.store_inverse_all() # this also removes weight norm
self.phone2mel = self.phone2mel.to(torch.device(device))
######################################
# load features to style models #
######################################
self.speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb",
run_opts={"device": str(device)},
savedir=os.path.join(MODELS_DIR, "Embedding", "speechbrain_speaker_embedding_ecapa"))
################################
# load mel to wave model #
################################
vocoder_checkpoint = torch.load(vocoder_model_path, map_location="cpu")
self.vocoder = HiFiGAN()
self.vocoder.load_state_dict(vocoder_checkpoint)
self.vocoder = self.vocoder.to(device).eval()
self.vocoder.remove_weight_norm()
self.meter = pyloudnorm.Meter(24000)
################################
# set defaults #
################################
self.default_utterance_embedding = checkpoint["default_emb"].to(self.device)
self.ap = AudioPreprocessor(input_sr=100, output_sr=16000, device=device)
self.phone2mel.eval()
self.vocoder.eval()
self.lang_id = get_language_id(language)
self.to(torch.device(device))
self.eval()
def set_utterance_embedding(self, path_to_reference_audio="", embedding=None):
if embedding is not None:
self.default_utterance_embedding = embedding.squeeze().to(self.device)
return
if type(path_to_reference_audio) != list:
path_to_reference_audio = [path_to_reference_audio]
if len(path_to_reference_audio) > 0:
for path in path_to_reference_audio:
assert os.path.exists(path)
speaker_embs = list()
for path in path_to_reference_audio:
wave, sr = soundfile.read(path)
wave = Resample(orig_freq=sr, new_freq=16000).to(self.device)(torch.tensor(wave, device=self.device, dtype=torch.float32))
speaker_embedding = self.speaker_embedding_func_ecapa.encode_batch(wavs=wave.to(self.device).unsqueeze(0)).squeeze()
speaker_embs.append(speaker_embedding)
self.default_utterance_embedding = sum(speaker_embs) / len(speaker_embs)
def set_language(self, lang_id):
"""
The id parameter actually refers to the shorthand. This has become ambiguous with the introduction of the actual language IDs
"""
self.set_phonemizer_language(lang_id=lang_id)
self.set_accent_language(lang_id=lang_id)
def set_phonemizer_language(self, lang_id):
self.text2phone.change_lang(language=lang_id, add_silence_to_end=True)
def set_accent_language(self, lang_id):
if lang_id in ['ajp', 'ajt', 'lak', 'lno', 'nul', 'pii', 'plj', 'slq', 'smd', 'snb', 'tpw', 'wya', 'zua', 'en-us', 'en-sc', 'fr-be', 'fr-sw', 'pt-br', 'spa-lat', 'vi-ctr', 'vi-so']:
if lang_id == 'vi-so' or lang_id == 'vi-ctr':
lang_id = 'vie'
elif lang_id == 'spa-lat':
lang_id = 'spa'
elif lang_id == 'pt-br':
lang_id = 'por'
elif lang_id == 'fr-sw' or lang_id == 'fr-be':
lang_id = 'fra'
elif lang_id == 'en-sc' or lang_id == 'en-us':
lang_id = 'eng'
else:
# no clue where these others are even coming from, they are not in ISO 639-2
lang_id = 'eng'
self.lang_id = get_language_id(lang_id).to(self.device)
@spaces.GPU
def forward(self,
text,
view=False,
duration_scaling_factor=1.0,
pitch_variance_scale=1.0,
energy_variance_scale=1.0,
pause_duration_scaling_factor=1.0,
durations=None,
pitch=None,
energy=None,
input_is_phones=False,
return_plot_as_filepath=False,
loudness_in_db=-24.0,
glow_sampling_temperature=0.2):
"""
duration_scaling_factor: reasonable values are 0.8 < scale < 1.2.
1.0 means no scaling happens, higher values increase durations for the whole
utterance, lower values decrease durations for the whole utterance.
pitch_variance_scale: reasonable values are 0.6 < scale < 1.4.
1.0 means no scaling happens, higher values increase variance of the pitch curve,
lower values decrease variance of the pitch curve.
energy_variance_scale: reasonable values are 0.6 < scale < 1.4.
1.0 means no scaling happens, higher values increase variance of the energy curve,
lower values decrease variance of the energy curve.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.to(device)
with torch.inference_mode():
phones = self.text2phone.string_to_tensor(text, input_phonemes=input_is_phones).to(torch.device(self.device))
mel, durations, pitch, energy = self.phone2mel(phones,
return_duration_pitch_energy=True,
utterance_embedding=self.default_utterance_embedding.to(device),
durations=durations,
pitch=pitch,
energy=energy,
lang_id=self.lang_id.to(device),
duration_scaling_factor=duration_scaling_factor,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
pause_duration_scaling_factor=pause_duration_scaling_factor,
glow_sampling_temperature=glow_sampling_temperature)
wave, _, _ = self.vocoder(mel.unsqueeze(0))
wave = wave.squeeze().cpu()
wave = wave.numpy()
sr = 24000
try:
loudness = self.meter.integrated_loudness(wave)
wave = pyloudnorm.normalize.loudness(wave, loudness, loudness_in_db)
except ValueError:
# if the audio is too short, a value error will arise
pass
if view or return_plot_as_filepath:
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(9, 5))
ax.imshow(mel.cpu().numpy(), origin="lower", cmap='GnBu')
ax.yaxis.set_visible(False)
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy())
ax.xaxis.grid(True, which='minor')
ax.set_xticks(label_positions, minor=False)
if input_is_phones:
phones = text.replace(" ", "|")
else:
phones = self.text2phone.get_phone_string(text, for_plot_labels=True)
ax.set_xticklabels(phones)
word_boundaries = list()
for label_index, phone in enumerate(phones):
if phone == "|":
word_boundaries.append(label_positions[label_index])
try:
prev_word_boundary = 0
word_label_positions = list()
for word_boundary in word_boundaries:
word_label_positions.append((word_boundary + prev_word_boundary) / 2)
prev_word_boundary = word_boundary
word_label_positions.append((duration_splits[-1] + prev_word_boundary) / 2)
secondary_ax = ax.secondary_xaxis('bottom')
secondary_ax.tick_params(axis="x", direction="out", pad=24)
secondary_ax.set_xticks(word_label_positions, minor=False)
secondary_ax.set_xticklabels(text.split())
secondary_ax.tick_params(axis='x', colors='orange')
secondary_ax.xaxis.label.set_color('orange')
except ValueError:
ax.set_title(text)
except IndexError:
ax.set_title(text)
ax.vlines(x=duration_splits, colors="green", linestyles="solid", ymin=0, ymax=120, linewidth=0.5)
ax.vlines(x=word_boundaries, colors="orange", linestyles="solid", ymin=0, ymax=120, linewidth=1.0)
plt.subplots_adjust(left=0.02, bottom=0.2, right=0.98, top=.9, wspace=0.0, hspace=0.0)
ax.set_aspect("auto")
if return_plot_as_filepath:
plt.savefig("tmp.png")
return wave, sr, "tmp.png"
self.to("cpu")
self.device="cpu"
return wave, sr
def read_to_file(self,
text_list,
file_location,
duration_scaling_factor=1.0,
pitch_variance_scale=1.0,
energy_variance_scale=1.0,
pause_duration_scaling_factor=1.0,
silent=False,
dur_list=None,
pitch_list=None,
energy_list=None,
glow_sampling_temperature=0.2):
"""
Args:
silent: Whether to be verbose about the process
text_list: A list of strings to be read
file_location: The path and name of the file it should be saved to
energy_list: list of energy tensors to be used for the texts
pitch_list: list of pitch tensors to be used for the texts
dur_list: list of duration tensors to be used for the texts
duration_scaling_factor: reasonable values are 0.8 < scale < 1.2.
1.0 means no scaling happens, higher values increase durations for the whole
utterance, lower values decrease durations for the whole utterance.
pitch_variance_scale: reasonable values are 0.6 < scale < 1.4.
1.0 means no scaling happens, higher values increase variance of the pitch curve,
lower values decrease variance of the pitch curve.
energy_variance_scale: reasonable values are 0.6 < scale < 1.4.
1.0 means no scaling happens, higher values increase variance of the energy curve,
lower values decrease variance of the energy curve.
"""
if not dur_list:
dur_list = []
if not pitch_list:
pitch_list = []
if not energy_list:
energy_list = []
silence = torch.zeros([14300])
wav = silence.clone()
for (text, durations, pitch, energy) in itertools.zip_longest(text_list, dur_list, pitch_list, energy_list):
if text.strip() != "":
if not silent:
print("Now synthesizing: {}".format(text))
spoken_sentence, sr = self(text,
durations=durations.to(self.device) if durations is not None else None,
pitch=pitch.to(self.device) if pitch is not None else None,
energy=energy.to(self.device) if energy is not None else None,
duration_scaling_factor=duration_scaling_factor,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
pause_duration_scaling_factor=pause_duration_scaling_factor,
glow_sampling_temperature=glow_sampling_temperature)
spoken_sentence = torch.tensor(spoken_sentence).cpu()
wav = torch.cat((wav, spoken_sentence, silence), 0)
soundfile.write(file=file_location, data=float2pcm(wav), samplerate=sr, subtype="PCM_16")
def read_aloud(self,
text,
view=False,
duration_scaling_factor=1.0,
pitch_variance_scale=1.0,
energy_variance_scale=1.0,
blocking=False,
glow_sampling_temperature=0.2):
if text.strip() == "":
return
wav, sr = self(text,
view,
duration_scaling_factor=duration_scaling_factor,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
glow_sampling_temperature=glow_sampling_temperature)
silence = torch.zeros([sr // 2])
wav = torch.cat((silence, torch.tensor(wav), silence), 0).numpy()
sounddevice.play(float2pcm(wav), samplerate=sr)
if view:
plt.show()
if blocking:
sounddevice.wait()
|