File size: 12,431 Bytes
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os
import pickle
from copy import deepcopy

import pandas as pd
from tqdm import tqdm

from Preprocessing.multilinguality.SimilaritySolver import SimilaritySolver
from Utility.storage_config import MODELS_DIR
from Utility.utils import load_json_from_path

ISO_LOOKUP_PATH = "iso_lookup.json"
ISO_TO_FULLNAME_PATH = "iso_to_fullname.json"
LANG_PAIRS_MAP_PATH = "lang_1_to_lang_2_to_map_dist.json"
LANG_PAIRS_TREE_PATH = "lang_1_to_lang_2_to_tree_dist.json"
LANG_PAIRS_ASP_PATH = "asp_dict.pkl"
LANG_PAIRS_LEARNED_DIST_PATH = "lang_1_to_lang_2_to_learned_dist.json"
LANG_PAIRS_ORACLE_PATH = "lang_1_to_lang_2_to_oracle_dist.json"
SUPVERVISED_LANGUAGES_PATH = "supervised_languages.json"
DATASET_SAVE_DIR = "distance_datasets/"


class LangDistDatasetCreator():
    def __init__(self, model_path, cache_root="."):
        self.model_path = model_path
        self.cache_root = cache_root
        self.lang_pairs_map = None
        self.largest_value_map_dist = None
        self.lang_pairs_tree = None
        self.lang_pairs_asp = None
        self.lang_pairs_learned_dist = None
        self.lang_pairs_oracle = None
        self.supervised_langs = load_json_from_path(os.path.join(cache_root, SUPVERVISED_LANGUAGES_PATH))
        self.iso_lookup = load_json_from_path(os.path.join(cache_root, ISO_LOOKUP_PATH))
        self.iso_to_fullname = load_json_from_path(os.path.join(cache_root, ISO_TO_FULLNAME_PATH))

    def load_required_distance_lookups(self, distance_type, excluded_distances=[]):
        # init required distance lookups
        print(f"Loading required distance lookups for distance_type '{distance_type}'.")
        try:
            if distance_type == "combined":
                if "map" not in excluded_distances and not self.lang_pairs_map:
                    self.lang_pairs_map = load_json_from_path(os.path.join(self.cache_root, LANG_PAIRS_MAP_PATH))
                    self.largest_value_map_dist = 0.0
                    for _, values in self.lang_pairs_map.items():
                        for _, value in values.items():
                            self.largest_value_map_dist = max(self.largest_value_map_dist, value)
                if "tree" not in excluded_distances and not self.lang_pairs_tree:
                    self.lang_pairs_tree = load_json_from_path(os.path.join(self.cache_root, LANG_PAIRS_TREE_PATH))
                if "asp" not in excluded_distances and not self.lang_pairs_asp:
                    with open(os.path.join(self.cache_root, LANG_PAIRS_ASP_PATH), "rb") as f:
                        self.lang_pairs_asp = pickle.load(f)
            elif distance_type == "map" and not self.lang_pairs_map:
                self.lang_pairs_map = load_json_from_path(os.path.join(self.cache_root, LANG_PAIRS_MAP_PATH))
                self.largest_value_map_dist = 0.0
                for _, values in self.lang_pairs_map.items():
                    for _, value in values.items():
                        self.largest_value_map_dist = max(self.largest_value_map_dist, value)
            elif distance_type == "tree" and not self.lang_pairs_tree:
                self.lang_pairs_tree = load_json_from_path(os.path.join(self.cache_root, LANG_PAIRS_TREE_PATH))
            elif distance_type == "asp" and not self.lang_pairs_asp:
                with open(os.path.join(self.cache_root, LANG_PAIRS_ASP_PATH), "rb") as f:
                    self.lang_pairs_asp = pickle.load(f)
            elif distance_type == "learned" and not self.lang_pairs_learned_dist:
                self.lang_pairs_learned_dist = load_json_from_path(os.path.join(self.cache_root, LANG_PAIRS_LEARNED_DIST_PATH))
            elif distance_type == "oracle" and not self.lang_pairs_oracle:
                self.lang_pairs_oracle = load_json_from_path(os.path.join(self.cache_root, LANG_PAIRS_ORACLE_PATH))
        except FileNotFoundError as e:
            raise FileNotFoundError("Please create all lookup files via create_distance_lookups.py") from e

    def create_dataset(self,
                       distance_type: str = "learned",
                       zero_shot: bool = False,
                       n_closest: int = 50,
                       excluded_languages: list = [],
                       excluded_distances: list = [],
                       find_furthest: bool = False,
                       individual_distances: bool = False,
                       write_to_csv=True):
        """Create dataset with a given feature's distance in a dict, and saves it to a CSV file."""
        distance_types = ["learned", "map", "tree", "asp", "combined", "random", "oracle"]
        if distance_type not in distance_types:
            raise ValueError(f"Invalid distance type '{distance_type}'. Expected one of {distance_types}")
        dataset_dict = dict()
        self.load_required_distance_lookups(distance_type, excluded_distances)

        sim_solver = SimilaritySolver(tree_dist=self.lang_pairs_tree,
                                      map_dist=self.lang_pairs_map,
                                      largest_value_map_dist=self.largest_value_map_dist,
                                      asp_dict=self.lang_pairs_asp,
                                      learned_dist=self.lang_pairs_learned_dist,
                                      oracle_dist=self.lang_pairs_oracle,
                                      iso_to_fullname=self.iso_to_fullname)
        supervised_langs = sorted(self.supervised_langs)
        remove_langs_suffix = ""
        if len(excluded_languages) > 0:
            remove_langs_suffix = "_no-illegal-langs"
            for excl_lang in excluded_languages:
                supervised_langs.remove(excl_lang)
        individual_dist_suffix, excluded_feat_suffix = "", ""
        if distance_type == "combined":
            if individual_distances:
                individual_dist_suffix = "_indiv-dists"
            if len(excluded_distances) > 0:
                excluded_feat_suffix = "_excl-" + "-".join(excluded_distances)
        furthest_suffix = "_furthest" if find_furthest else ""
        zero_shot_suffix = ""
        if zero_shot:
            iso_codes_to_ids = deepcopy(self.iso_lookup)[-1]
            zero_shot_suffix = "_zeroshot"
            # leave supervised-pretrained language embeddings untouched
            for sup_lang in supervised_langs:
                iso_codes_to_ids.pop(sup_lang, None)
            lang_codes = list(iso_codes_to_ids)
        else:
            lang_codes = supervised_langs
        failed_langs = []
        if distance_type == "random":
            random_seed = 0
        sorted_by = "closest" if not find_furthest else "furthest"

        for lang in tqdm(lang_codes, desc=f"Retrieving {sorted_by} distances"):
            if distance_type == "combined":
                feature_dict = sim_solver.find_closest_combined_distance(lang,
                                                                         supervised_langs,
                                                                         k=n_closest,
                                                                         individual_distances=individual_distances,
                                                                         excluded_features=excluded_distances,
                                                                         find_furthest=find_furthest)
            elif distance_type == "random":
                random_seed += 1
                dataset_dict[lang] = [lang]  # target language as first column
                feature_dict = sim_solver.find_closest(distance_type,
                                                       lang,
                                                       supervised_langs,
                                                       k=n_closest,
                                                       find_furthest=find_furthest,
                                                       random_seed=random_seed)
            else:
                feature_dict = sim_solver.find_closest(distance_type,
                                                       lang,
                                                       supervised_langs,
                                                       k=n_closest,
                                                       find_furthest=find_furthest)
            # discard incomplete results
            if len(feature_dict) < n_closest:
                failed_langs.append(lang)
                continue

            dataset_dict[lang] = [lang]  # target language as first column
            # create entry for a single close lang (`feature_dict` must be sorted by distance)
            for _, close_lang in enumerate(feature_dict):
                if distance_type == "combined":
                    dist_combined = feature_dict[close_lang]["combined_distance"]
                    close_lang_feature_list = [close_lang, dist_combined]
                    if individual_distances:
                        indiv_dists = feature_dict[close_lang]["individual_distances"]
                        close_lang_feature_list.extend(indiv_dists)
                else:
                    dist = feature_dict[close_lang]
                    close_lang_feature_list = [close_lang, dist]
                # column order: compared close language, {feature}_dist (plus optionally indiv dists)
                dataset_dict[lang].extend(close_lang_feature_list)

        # prepare df columns
        dataset_columns = ["target_lang"]
        for i in range(n_closest):
            dataset_columns.extend([f"closest_lang_{i}", f"{distance_type}_dist_{i}"])
            if distance_type == "combined" and individual_distances:
                if "map" not in excluded_distances:
                    dataset_columns.append(f"map_dist_{i}")
                if "asp" not in excluded_distances:
                    dataset_columns.append(f"asp_dist_{i}")
                if "tree" not in excluded_distances:
                    dataset_columns.append(f"tree_dist_{i}")
        df = pd.DataFrame.from_dict(dataset_dict, orient="index")
        df.columns = dataset_columns

        if write_to_csv:
            out_path = os.path.join(os.path.join(self.cache_root, DATASET_SAVE_DIR), f"dataset_{distance_type}_top{n_closest}{furthest_suffix}{zero_shot_suffix}{remove_langs_suffix}{excluded_feat_suffix}{individual_dist_suffix}" + ".csv")
            os.makedirs(os.path.join(self.cache_root, DATASET_SAVE_DIR), exist_ok=True)
            df.to_csv(out_path, sep="|", index=False)
        print(f"Successfully retrieved distances for {len(lang_codes) - len(failed_langs)}/{len(lang_codes)} languages.")
        if len(failed_langs) > 0:
            print(f"Failed to retrieve distances for the following {len(failed_langs)} languages:\n{failed_langs}")
        return df


if __name__ == "__main__":
    default_model_path = os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt")  # MODELS_DIR must be absolute path, the relative path will fail at this location
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", "-m", type=str, default=default_model_path, help="model path from which to obtain pretrained language embeddings")
    parser.add_argument("--learned_dist_path", type=str, default="lang_1_to_lang_2_to_learned_dist.json",
                        help="filepath of JSON file containing the meta-learned pairwise distances")
    args = parser.parse_args()

    dc = LangDistDatasetCreator(args.model_path)

    excluded_langs = []

    # create datasets for evaluation of approx. lang emb methods on supervised languages
    dataset = dc.create_dataset(distance_type="tree", n_closest=30, zero_shot=False)
    dataset = dc.create_dataset(distance_type="map", n_closest=30, zero_shot=False, excluded_languages=excluded_langs)
    dataset = dc.create_dataset(distance_type="map", n_closest=30, zero_shot=False, find_furthest=True)
    dataset = dc.create_dataset(distance_type="asp", n_closest=30, zero_shot=False)
    dataset = dc.create_dataset(distance_type="random", n_closest=30, zero_shot=False, excluded_languages=excluded_langs)
    dataset = dc.create_dataset(distance_type="combined", n_closest=30, zero_shot=False, individual_distances=True)
    dataset = dc.create_dataset(distance_type="learned", n_closest=30, zero_shot=False)
    dataset = dc.create_dataset(distance_type="oracle", n_closest=30, zero_shot=False)