Spaces:
Running
on
T4
Running
on
T4
File size: 9,376 Bytes
68a11d5 6cd09aa 185fc75 68a11d5 185fc75 6cd09aa 62d7978 6cd09aa 13fc065 4daea3f 6cd09aa 13fc065 ab12c36 185fc75 6cd09aa 185fc75 6cd09aa 185fc75 6cd09aa 185fc75 6cd09aa 6a66802 62d7978 6cd09aa ee42912 6cd09aa 6a66802 62d7978 6a66802 62d7978 6a66802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import spaces
from run_model_downloader import download_models
download_models()
import gradio as gr
from Preprocessing.multilinguality.SimilaritySolver import load_json_from_path
from Utility.utils import float2pcm
import os
import torch
from Architectures.ControllabilityGAN.GAN import GanWrapper
from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface
from Utility.storage_config import MODELS_DIR
class ControllableInterface(torch.nn.Module):
def __init__(self, available_artificial_voices=1000):
super().__init__()
self.model = ToucanTTSInterface(device="cpu", tts_model_path="Meta")
self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device="cpu")
self.generated_speaker_embeds = list()
self.available_artificial_voices = available_artificial_voices
self.current_language = ""
self.current_accent = ""
self.device = "cpu"
self.model.to("cpu")
self.model.device = "cpu"
self.wgan.to("cpu")
self.wgan.device = "cpu"
def read(self,
prompt,
language,
accent,
voice_seed,
duration_scaling_factor,
pause_duration_scaling_factor,
pitch_variance_scale,
energy_variance_scale,
emb_slider_1,
emb_slider_2,
emb_slider_3,
emb_slider_4,
emb_slider_5,
emb_slider_6,
loudness_in_db
):
if self.current_language != language:
self.model.set_phonemizer_language(language)
self.current_language = language
if self.current_accent != accent:
self.model.set_accent_language(accent)
self.current_accent = accent
self.wgan.set_latent(voice_seed)
controllability_vector = torch.tensor([emb_slider_1,
emb_slider_2,
emb_slider_3,
emb_slider_4,
emb_slider_5,
emb_slider_6], dtype=torch.float32)
embedding = self.wgan.modify_embed(controllability_vector)
self.model.set_utterance_embedding(embedding=embedding)
phones = self.model.text2phone.get_phone_string(prompt)
if len(phones) > 1800:
if language == "deu":
prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf."
elif language == "ell":
prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη."
elif language == "spa":
prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes."
elif language == "fin":
prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan."
elif language == "rus":
prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей."
elif language == "hun":
prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre."
elif language == "nld":
prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen."
elif language == "fra":
prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties."
elif language == 'pol':
prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części."
elif language == 'por':
prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes."
elif language == 'ita':
prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti."
elif language == 'cmn':
prompt = "你的输入太长了。请尝试使用较短的文本或将其拆分为多个部分。"
elif language == 'vie':
prompt = "Đầu vào của bạn quá dài. Vui lòng thử một văn bản ngắn hơn hoặc chia nó thành nhiều phần."
else:
prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
if self.current_language != "eng":
self.model.set_phonemizer_language("eng")
self.current_language = "eng"
if self.current_accent != "eng":
self.model.set_accent_language("eng")
self.current_accent = "eng"
print(prompt)
wav, sr, fig = self.model(prompt,
input_is_phones=False,
duration_scaling_factor=duration_scaling_factor,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
pause_duration_scaling_factor=pause_duration_scaling_factor,
return_plot_as_filepath=True,
loudness_in_db=loudness_in_db)
return sr, wav, fig
title = "Controllable Text-to-Speech for over 7000 Languages"
article = "Check out the IMS Toucan TTS Toolkit at https://github.com/DigitalPhonetics/IMS-Toucan"
available_artificial_voices = 1000
path_to_iso_list = "Preprocessing/multilinguality/iso_to_fullname.json"
iso_to_name = load_json_from_path(path_to_iso_list)
text_selection = [f"{iso_to_name[iso_code]} Text ({iso_code})" for iso_code in iso_to_name]
controllable_ui = ControllableInterface(available_artificial_voices=available_artificial_voices)
def read(prompt,
language,
voice_seed,
duration_scaling_factor,
pitch_variance_scale,
energy_variance_scale,
emb1,
emb2
):
sr, wav, fig = controllable_ui.read(prompt,
language.split(" ")[-1].split("(")[1].split(")")[0],
language.split(" ")[-1].split("(")[1].split(")")[0],
voice_seed,
duration_scaling_factor,
1.,
pitch_variance_scale,
energy_variance_scale,
emb1,
emb2,
0.,
0.,
0.,
0.,
-24.)
return (sr, float2pcm(wav)), fig
iface = gr.Interface(fn=read,
inputs=[gr.Textbox(lines=2,
placeholder="write what you want the synthesis to read here...",
value="The woods are lovely, dark and deep, but I have promises to keep, and miles to go, before I sleep.",
label="Text input"),
gr.Dropdown(text_selection,
type="value",
value='English Text (eng)',
label="Select the Language of the Text (type on your keyboard to find it quickly)"),
gr.Slider(minimum=0, maximum=available_artificial_voices, step=1,
value=279,
label="Random Seed for the artificial Voice"),
gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Duration Scale"),
gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"),
gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"),
gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Femininity / Masculinity"),
gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth")
],
outputs=[gr.Audio(type="numpy", label="Speech"),
gr.Image(label="Visualization")],
title=title,
theme="default",
allow_flagging="never",
article=article)
iface.launch()
|