Spaces:
Running
on
T4
Running
on
T4
File size: 12,752 Bytes
9e275b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Written by Shigeki Karita, 2019
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# Adapted by Florian Lux, 2021
"""Multi-Head Attention layer definition."""
import math
import numpy
import torch
from torch import nn
from Utility.utils import make_non_pad_mask
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head, n_feat, dropout_rate):
"""
Construct an MultiHeadedAttention object.
"""
super(MultiHeadedAttention, self).__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.attn = None
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query, key, value):
"""
Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(self, value, scores, mask):
"""
Compute attention context vector.
Args:
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
scores = scores.masked_fill(mask, min_value)
self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2)
else:
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(self.attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(self, query, key, value, mask):
"""
Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""
Multi-Head Attention layer with relative position encoding.
Details can be found in https://github.com/espnet/espnet/pull/2816.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
"""
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate)
self.zero_triu = zero_triu
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x):
"""
Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[:, :, :, : x.size(-1) // 2 + 1] # only keep the positions from 0 to time2
if self.zero_triu:
ones = torch.ones((x.size(2), x.size(3)), device=x.device)
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self, query, key, value, pos_emb, mask):
"""
Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, 2*time1-1, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, 2*time1-1)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask)
class GuidedAttentionLoss(torch.nn.Module):
"""
Guided attention loss function module.
This module calculates the guided attention loss described
in `Efficiently Trainable Text-to-Speech System Based
on Deep Convolutional Networks with Guided Attention`_,
which forces the attention to be diagonal.
.. _`Efficiently Trainable Text-to-Speech System
Based on Deep Convolutional Networks with Guided Attention`:
https://arxiv.org/abs/1710.08969
"""
def __init__(self, sigma=0.4, alpha=1.0):
"""
Initialize guided attention loss module.
Args:
sigma (float, optional): Standard deviation to control
how close attention to a diagonal.
alpha (float, optional): Scaling coefficient (lambda).
reset_always (bool, optional): Whether to always reset masks.
"""
super(GuidedAttentionLoss, self).__init__()
self.sigma = sigma
self.alpha = alpha
self.guided_attn_masks = None
self.masks = None
def _reset_masks(self):
self.guided_attn_masks = None
self.masks = None
def forward(self, att_ws, ilens, olens):
"""
Calculate forward propagation.
Args:
att_ws (Tensor): Batch of attention weights (B, T_max_out, T_max_in).
ilens (LongTensor): Batch of input lenghts (B,).
olens (LongTensor): Batch of output lenghts (B,).
Returns:
Tensor: Guided attention loss value.
"""
self._reset_masks()
self.guided_attn_masks = self._make_guided_attention_masks(ilens, olens).to(att_ws.device)
self.masks = self._make_masks(ilens, olens).to(att_ws.device)
losses = self.guided_attn_masks * att_ws
loss = torch.mean(losses.masked_select(self.masks))
self._reset_masks()
return self.alpha * loss
def _make_guided_attention_masks(self, ilens, olens):
n_batches = len(ilens)
max_ilen = max(ilens)
max_olen = max(olens)
guided_attn_masks = torch.zeros((n_batches, max_olen, max_ilen), device=ilens.device)
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma)
return guided_attn_masks
@staticmethod
def _make_guided_attention_mask(ilen, olen, sigma):
"""
Make guided attention mask.
"""
grid_x, grid_y = torch.meshgrid(torch.arange(olen, device=olen.device).float(), torch.arange(ilen, device=ilen.device).float())
return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma ** 2)))
@staticmethod
def _make_masks(ilens, olens):
"""
Make masks indicating non-padded part.
Args:
ilens (LongTensor or List): Batch of lengths (B,).
olens (LongTensor or List): Batch of lengths (B,).
Returns:
Tensor: Mask tensor indicating non-padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
"""
in_masks = make_non_pad_mask(ilens, device=ilens.device) # (B, T_in)
out_masks = make_non_pad_mask(olens, device=olens.device) # (B, T_out)
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) # (B, T_out, T_in)
class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss):
"""
Guided attention loss function module for multi head attention.
Args:
sigma (float, optional): Standard deviation to control
how close attention to a diagonal.
alpha (float, optional): Scaling coefficient (lambda).
reset_always (bool, optional): Whether to always reset masks.
"""
def forward(self, att_ws, ilens, olens):
"""
Calculate forward propagation.
Args:
att_ws (Tensor):
Batch of multi head attention weights (B, H, T_max_out, T_max_in).
ilens (LongTensor): Batch of input lenghts (B,).
olens (LongTensor): Batch of output lenghts (B,).
Returns:
Tensor: Guided attention loss value.
"""
if self.guided_attn_masks is None:
self.guided_attn_masks = (self._make_guided_attention_masks(ilens, olens).to(att_ws.device).unsqueeze(1))
if self.masks is None:
self.masks = self._make_masks(ilens, olens).to(att_ws.device).unsqueeze(1)
losses = self.guided_attn_masks * att_ws
loss = torch.mean(losses.masked_select(self.masks))
if self.reset_always:
self._reset_masks()
return self.alpha * loss
|