Spaces:
Running
on
T4
Running
on
T4
File size: 17,372 Bytes
9e275b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import statistics
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
from Architectures.Aligner.Aligner import Aligner
from Architectures.Aligner.CodecAlignerDataset import CodecAlignerDataset
from Architectures.ToucanTTS.DurationCalculator import DurationCalculator
from Architectures.ToucanTTS.EnergyCalculator import EnergyCalculator
from Architectures.ToucanTTS.PitchCalculator import Parselmouth
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from Preprocessing.EnCodecAudioPreprocessor import CodecAudioPreprocessor
from Preprocessing.TextFrontend import get_language_id
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Utility.utils import remove_elements
class TTSDataset(Dataset):
def __init__(self,
path_to_transcript_dict,
acoustic_checkpoint_path,
cache_dir,
lang,
loading_processes=os.cpu_count() if os.cpu_count() is not None else 10,
min_len_in_seconds=1,
max_len_in_seconds=15,
device=torch.device("cpu"),
rebuild_cache=False,
ctc_selection=True,
save_imgs=False,
gpu_count=1,
rank=0,
annotate_silences=False):
self.cache_dir = cache_dir
self.device = device
self.pttd = path_to_transcript_dict
os.makedirs(cache_dir, exist_ok=True)
if not os.path.exists(os.path.join(cache_dir, "tts_train_cache.pt")) or rebuild_cache:
self._build_dataset_cache(path_to_transcript_dict=path_to_transcript_dict,
acoustic_checkpoint_path=acoustic_checkpoint_path,
cache_dir=cache_dir,
lang=lang,
loading_processes=loading_processes,
min_len_in_seconds=min_len_in_seconds,
max_len_in_seconds=max_len_in_seconds,
device=device,
rebuild_cache=rebuild_cache,
ctc_selection=ctc_selection,
save_imgs=save_imgs,
gpu_count=gpu_count,
rank=rank,
annotate_silences=annotate_silences)
self.cache_dir = cache_dir
self.gpu_count = gpu_count
self.rank = rank
self.language_id = get_language_id(lang)
self.datapoints = torch.load(os.path.join(self.cache_dir, "tts_train_cache.pt"), map_location='cpu')
if self.gpu_count > 1:
# we only keep a chunk of the dataset in memory to avoid redundancy. Which chunk, we figure out using the rank.
while len(self.datapoints) % self.gpu_count != 0:
self.datapoints.pop(-1) # a bit unfortunate, but if you're using multiple GPUs, you probably have a ton of datapoints anyway.
chunksize = int(len(self.datapoints) / self.gpu_count)
self.datapoints = self.datapoints[chunksize * self.rank:chunksize * (self.rank + 1)]
print(f"Loaded a TTS dataset with {len(self.datapoints)} datapoints from {cache_dir}.")
def _build_dataset_cache(self,
path_to_transcript_dict,
acoustic_checkpoint_path,
cache_dir,
lang,
loading_processes=os.cpu_count() if os.cpu_count() is not None else 10,
min_len_in_seconds=1,
max_len_in_seconds=15,
device=torch.device("cpu"),
rebuild_cache=False,
ctc_selection=True,
save_imgs=False,
gpu_count=1,
rank=0,
annotate_silences=False):
if gpu_count != 1:
import sys
print("Please run the feature extraction using only a single GPU. Multi-GPU is only supported for training.")
sys.exit()
if not os.path.exists(os.path.join(cache_dir, "aligner_train_cache.pt")) or rebuild_cache:
CodecAlignerDataset(path_to_transcript_dict=path_to_transcript_dict,
cache_dir=cache_dir,
lang=lang,
loading_processes=loading_processes,
min_len_in_seconds=min_len_in_seconds,
max_len_in_seconds=max_len_in_seconds,
rebuild_cache=rebuild_cache,
device=device)
datapoints = torch.load(os.path.join(cache_dir, "aligner_train_cache.pt"), map_location='cpu')
# we use the aligner dataset as basis and augment it to contain the additional information we need for tts.
self.dataset, _, speaker_embeddings, filepaths = datapoints
print("... building dataset cache ...")
self.codec_wrapper = CodecAudioPreprocessor(input_sr=-1, device=device)
self.spec_extractor_for_features = AudioPreprocessor(input_sr=16000, output_sr=16000, device=device)
self.datapoints = list()
self.ctc_losses = list()
self.acoustic_model = Aligner()
self.acoustic_model.load_state_dict(torch.load(acoustic_checkpoint_path, map_location="cpu")["asr_model"])
self.acoustic_model = self.acoustic_model.to(device)
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True # torch 1.9 has a bug in the hub loading, this is a workaround
# careful: assumes 16kHz or 8kHz audio
silero_model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad', force_reload=False, onnx=False, verbose=False)
(get_speech_timestamps, save_audio, read_audio, VADIterator, collect_chunks) = utils
torch.set_grad_enabled(True) # finding this issue was very infuriating: silero sets
# this to false globally during model loading rather than using inference_mode or no_grad
silero_model = silero_model.to(device)
# ==========================================
# actual creation of datapoints starts here
# ==========================================
parsel = Parselmouth(fs=16000)
energy_calc = EnergyCalculator(fs=16000).to(device)
self.dc = DurationCalculator()
vis_dir = os.path.join(cache_dir, "duration_vis")
if save_imgs:
os.makedirs(os.path.join(vis_dir, "post_clean"), exist_ok=True)
if annotate_silences:
os.makedirs(os.path.join(vis_dir, "pre_clean"), exist_ok=True)
for index in tqdm(range(len(self.dataset))):
codes = self.dataset[index][1]
if codes.size()[0] != 24: # no clue why this is sometimes the case
codes = codes.transpose(0, 1)
decoded_wave = self.codec_wrapper.indexes_to_audio(codes.int().to(device))
decoded_wave_length = torch.LongTensor([len(decoded_wave)])
features = self.spec_extractor_for_features.audio_to_mel_spec_tensor(decoded_wave, explicit_sampling_rate=16000)
feature_lengths = torch.LongTensor([len(features[0])])
text = self.dataset[index][0]
if annotate_silences:
text = self._annotate_silences(text, get_speech_timestamps, index, vis_dir, decoded_wave, device, features, silero_model, save_imgs, decoded_wave_length)
cached_duration, ctc_loss = self._calculate_durations(text, index, os.path.join(vis_dir, "post_clean"), features, save_imgs)
cached_energy = energy_calc(input_waves=torch.tensor(decoded_wave).unsqueeze(0).to(device),
input_waves_lengths=decoded_wave_length,
feats_lengths=feature_lengths,
text=text,
durations=cached_duration.unsqueeze(0),
durations_lengths=torch.LongTensor([len(cached_duration)]))[0].squeeze(0).cpu()
cached_pitch = parsel(input_waves=torch.tensor(decoded_wave).unsqueeze(0),
input_waves_lengths=decoded_wave_length,
feats_lengths=feature_lengths,
text=text,
durations=cached_duration.unsqueeze(0),
durations_lengths=torch.LongTensor([len(cached_duration)]))[0].squeeze(0).cpu()
self.datapoints.append([text, # text tensor
torch.LongTensor([len(text)]), # length of text tensor
codes, # codec tensor (in index form)
feature_lengths, # length of spectrogram
cached_duration.cpu(), # duration
cached_energy.float(), # energy
cached_pitch.float(), # pitch
speaker_embeddings[index], # speaker embedding,
filepaths[index] # path to the associated original raw audio file
])
self.ctc_losses.append(ctc_loss)
# =============================
# done with datapoint creation
# =============================
if ctc_selection and len(self.datapoints) > 300: # for less than 300 datapoints, we should not throw away anything.
# now we can filter out some bad datapoints based on the CTC scores we collected
mean_ctc = sum(self.ctc_losses) / len(self.ctc_losses)
std_dev = statistics.stdev(self.ctc_losses)
threshold = mean_ctc + (std_dev * 3.5)
for index in range(len(self.ctc_losses), 0, -1):
if self.ctc_losses[index - 1] > threshold:
self.datapoints.pop(index - 1)
print(f"Removing datapoint {index - 1}, because the CTC loss is 3.5 standard deviations higher than the mean. \n ctc: {round(self.ctc_losses[index - 1], 4)} vs. mean: {round(mean_ctc, 4)}")
# save to cache
if len(self.datapoints) > 0:
torch.save(self.datapoints, os.path.join(cache_dir, "tts_train_cache.pt"))
else:
import sys
print("No datapoints were prepared! Exiting...")
sys.exit()
del self.dataset
def _annotate_silences(self, text, get_speech_timestamps, index, vis_dir, decoded_wave, device, features, silero_model, save_imgs, decoded_wave_length):
"""
Takes in a text tensor and returns a text tensor with pauses added in all locations, where there are actually pauses in the speech signal. Unfortunately, this tends to make mistakes and not work quite as intended yet. I might revisit it in the future, if I see the need for extremely accurate labels for a small dataset of e.g. special data.
"""
text_with_pauses = list()
for phoneme_index, vector in enumerate(text):
# We add pauses before every word boundary, and later we remove the ones that were added too much
if vector[get_feature_to_index_lookup()["word-boundary"]] == 1:
if text[phoneme_index - 1][get_feature_to_index_lookup()["silence"]] != 1:
text_with_pauses.append([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0.])
text_with_pauses.append(vector.numpy().tolist())
else:
text_with_pauses.append(vector.numpy().tolist())
text = torch.Tensor(text_with_pauses)
cached_duration, _ = self._calculate_durations(text, index, os.path.join(vis_dir, "pre_clean"), features, save_imgs)
cumsum = 0
potential_silences = list()
phoneme_indexes_of_silences = list()
for phoneme_index, phone in enumerate(text):
if phone[get_feature_to_index_lookup()["silence"]] == 1 or phone[get_feature_to_index_lookup()["end of sentence"]] == 1 or phone[get_feature_to_index_lookup()["questionmark"]] == 1 or phone[get_feature_to_index_lookup()["exclamationmark"]] == 1 or phone[get_feature_to_index_lookup()["fullstop"]] == 1:
potential_silences.append([cumsum, cumsum + cached_duration[phoneme_index]])
phoneme_indexes_of_silences.append(phoneme_index)
cumsum = cumsum + cached_duration[phoneme_index]
with torch.inference_mode():
speech_timestamps = get_speech_timestamps(torch.Tensor(decoded_wave).to(device), silero_model, sampling_rate=16000)
vad_silences = list()
prev_end = 0
for speech_segment in speech_timestamps:
if prev_end != 0:
vad_silences.append([prev_end, speech_segment["start"]])
prev_end = speech_segment["end"]
# at this point we know all the silences and we know the legal silences.
# We have to transform them both into ratios, so we can compare them.
# If a silence overlaps with a legal silence, it can stay.
illegal_silences = list()
for silence_index, silence in enumerate(potential_silences):
illegal = True
start = silence[0] / len(features)
end = silence[1] / len(features)
for legal_silence in vad_silences:
legal_start = legal_silence[0] / decoded_wave_length
legal_end = legal_silence[1] / decoded_wave_length
if legal_start < start < legal_end or legal_start < end < legal_end:
illegal = False
break
if illegal:
# If it is an illegal silence, it is marked for removal in the original wave according to ration with real samplingrate.
illegal_silences.append(phoneme_indexes_of_silences[silence_index])
text = remove_elements(text, illegal_silences) # now we have all the silences where there should be silences and none where there shouldn't be any. We have to run the aligner again with this new information.
return text
def _calculate_durations(self, text, index, vis_dir, features, save_imgs):
# We deal with the word boundaries by having 2 versions of text: with and without word boundaries.
# We note the index of word boundaries and insert durations of 0 afterwards
text_without_word_boundaries = list()
indexes_of_word_boundaries = list()
for phoneme_index, vector in enumerate(text):
if vector[get_feature_to_index_lookup()["word-boundary"]] == 0:
text_without_word_boundaries.append(vector.numpy().tolist())
else:
indexes_of_word_boundaries.append(phoneme_index)
matrix_without_word_boundaries = torch.Tensor(text_without_word_boundaries)
alignment_path, ctc_loss = self.acoustic_model.inference(features=features.transpose(0, 1),
tokens=matrix_without_word_boundaries.to(self.device),
save_img_for_debug=os.path.join(vis_dir, f"{index}.png") if save_imgs else None,
return_ctc=True)
cached_duration = self.dc(torch.LongTensor(alignment_path), vis=None).cpu()
for index_of_word_boundary in indexes_of_word_boundaries:
cached_duration = torch.cat([cached_duration[:index_of_word_boundary],
torch.LongTensor([0]), # insert a 0 duration wherever there is a word boundary
cached_duration[index_of_word_boundary:]])
return cached_duration, ctc_loss
def __getitem__(self, index):
return self.datapoints[index][0], \
self.datapoints[index][1], \
self.datapoints[index][2], \
self.datapoints[index][3], \
self.datapoints[index][4], \
self.datapoints[index][5], \
self.datapoints[index][6], \
None, \
self.language_id, \
self.datapoints[index][7]
def __len__(self):
return len(self.datapoints)
def remove_samples(self, list_of_samples_to_remove):
for remove_id in sorted(list_of_samples_to_remove, reverse=True):
self.datapoints.pop(remove_id)
torch.save(self.datapoints, os.path.join(self.cache_dir, "tts_train_cache.pt"))
print("Dataset updated!")
|