Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
""" | |
References: | |
- https://github.com/jik876/hifi-gan | |
- https://github.com/kan-bayashi/ParallelWaveGAN | |
""" | |
import torch | |
class Conv1d(torch.nn.Conv1d): | |
""" | |
Conv1d module with customized initialization. | |
""" | |
def __init__(self, *args, **kwargs): | |
super(Conv1d, self).__init__(*args, **kwargs) | |
def reset_parameters(self): | |
torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu") | |
if self.bias is not None: | |
torch.nn.init.constant_(self.bias, 0.0) | |
class Conv1d1x1(Conv1d): | |
""" | |
1x1 Conv1d with customized initialization. | |
""" | |
def __init__(self, in_channels, out_channels, bias): | |
super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias) | |
class HiFiGANResidualBlock(torch.nn.Module): | |
"""Residual block module in HiFiGAN.""" | |
def __init__(self, | |
kernel_size=3, | |
channels=512, | |
dilations=(1, 3, 5), | |
bias=True, | |
use_additional_convs=True, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.1}, ): | |
""" | |
Initialize HiFiGANResidualBlock module. | |
Args: | |
kernel_size (int): Kernel size of dilation convolution layer. | |
channels (int): Number of channels for convolution layer. | |
dilations (List[int]): List of dilation factors. | |
use_additional_convs (bool): Whether to use additional convolution layers. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
nonlinear_activation (str): Activation function module name. | |
nonlinear_activation_params (dict): Hyperparameters for activation function. | |
""" | |
super().__init__() | |
self.use_additional_convs = use_additional_convs | |
self.convs1 = torch.nn.ModuleList() | |
if use_additional_convs: | |
self.convs2 = torch.nn.ModuleList() | |
assert kernel_size % 2 == 1, "Kernel size must be odd number." | |
for dilation in dilations: | |
self.convs1 += [torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
torch.nn.Conv1d(channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation, | |
bias=bias, | |
padding=(kernel_size - 1) // 2 * dilation, ), )] | |
if use_additional_convs: | |
self.convs2 += [torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
torch.nn.Conv1d(channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
bias=bias, | |
padding=(kernel_size - 1) // 2, ), )] | |
def forward(self, x): | |
""" | |
Calculate forward propagation. | |
Args: | |
x (Tensor): Input tensor (B, channels, T). | |
Returns: | |
Tensor: Output tensor (B, channels, T). | |
""" | |
for idx in range(len(self.convs1)): | |
xt = self.convs1[idx](x) | |
if self.use_additional_convs: | |
xt = self.convs2[idx](xt) | |
x = xt + x | |
return x | |