EnglishToucan / Utility /corpus_preparation.py
Flux9665's picture
update to current version
6a79837
raw
history blame
4.43 kB
import torch.multiprocessing
from Modules.Aligner.CodecAlignerDataset import CodecAlignerDataset
from Modules.Aligner.autoaligner_train_loop import train_loop as train_aligner
from Modules.ToucanTTS.TTSDataset import TTSDataset
from Utility.path_to_transcript_dicts import *
from Utility.storage_config import MODELS_DIR
def prepare_aligner_corpus(transcript_dict, corpus_dir, lang, device, phone_input=False,
gpu_count=1,
rank=0):
return CodecAlignerDataset(transcript_dict,
cache_dir=corpus_dir,
lang=lang,
loading_processes=5, # this can be increased for massive clusters, but the overheads that are introduced are kind of not really worth it
device=device,
phone_input=phone_input,
gpu_count=gpu_count,
rank=rank)
def prepare_tts_corpus(transcript_dict,
corpus_dir,
lang,
# For small datasets it's best to turn this off and instead inspect the data with the scorer, if there are any issues.
fine_tune_aligner=True,
use_reconstruction=True,
phone_input=False,
save_imgs=False,
gpu_count=1,
rank=0):
"""
create an aligner dataset,
fine-tune an aligner,
create a TTS dataset,
return it.
Automatically skips parts that have been done before.
"""
if not os.path.exists(os.path.join(corpus_dir, "tts_train_cache.pt")):
if fine_tune_aligner:
aligner_dir = os.path.join(corpus_dir, "Aligner")
aligner_loc = os.path.join(corpus_dir, "Aligner", "aligner.pt")
if not os.path.exists(os.path.join(corpus_dir, "aligner_train_cache.pt")):
prepare_aligner_corpus(transcript_dict, corpus_dir=corpus_dir, lang=lang, phone_input=phone_input, device=torch.device("cuda"))
if not os.path.exists(os.path.join(aligner_dir, "aligner.pt")):
aligner_datapoints = prepare_aligner_corpus(transcript_dict, corpus_dir=corpus_dir, lang=lang, phone_input=phone_input, device=torch.device("cuda"))
if os.path.exists(os.path.join(MODELS_DIR, "Aligner", "aligner.pt")):
train_aligner(train_dataset=aligner_datapoints,
device=torch.device("cuda"),
save_directory=aligner_dir,
steps=min(len(aligner_datapoints) // 2, 10000), # relatively good finetuning heuristic
batch_size=32 if len(aligner_datapoints) > 32 else len(aligner_datapoints) // 2,
path_to_checkpoint=os.path.join(MODELS_DIR, "Aligner", "aligner.pt"),
fine_tune=True,
debug_img_path=aligner_dir,
resume=False,
use_reconstruction=use_reconstruction)
else:
train_aligner(train_dataset=aligner_datapoints,
device=torch.device("cuda"),
save_directory=aligner_dir,
steps=len(aligner_datapoints) // 2, # relatively good heuristic
batch_size=32 if len(aligner_datapoints) > 32 else len(aligner_datapoints) // 2,
path_to_checkpoint=None,
fine_tune=False,
debug_img_path=aligner_dir,
resume=False,
use_reconstruction=use_reconstruction)
else:
aligner_loc = os.path.join(MODELS_DIR, "Aligner", "aligner.pt")
else:
aligner_loc = None
return TTSDataset(transcript_dict,
acoustic_checkpoint_path=aligner_loc,
cache_dir=corpus_dir,
device=torch.device("cuda"),
lang=lang,
save_imgs=save_imgs,
gpu_count=gpu_count,
rank=rank)