Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from https://github.com/KdaiP/StableTTS by https://github.com/KdaiP | |
https://github.com/KdaiP/StableTTS/blob/eebb177ebf195fd1246dedabec4ef69d9351a4f8/models/flow_matching.py | |
Code is under MIT License | |
""" | |
import imageio | |
import torch | |
import torch.nn.functional as F | |
from Architectures.ToucanTTS.dit_wrapper import Decoder | |
from Utility.utils import plot_spec_tensor | |
# copied from https://github.com/jaywalnut310/vits/blob/main/commons.py#L121 | |
def sequence_mask(length: torch.Tensor, max_length: int = None) -> torch.Tensor: | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
# modified from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/flow_matching.py | |
class CFMDecoder(torch.nn.Module): | |
def __init__(self, hidden_channels, out_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, gin_channels): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.gin_channels = gin_channels | |
self.sigma_min = 1e-4 | |
self.estimator = Decoder(hidden_channels, out_channels, filter_channels, p_dropout, n_layers, n_heads, kernel_size, gin_channels) | |
def forward(self, mu, mask, n_timesteps, temperature=1.0, c=None): | |
"""Forward diffusion | |
Args: | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
n_timesteps (int): number of diffusion steps | |
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. | |
c (torch.Tensor, optional): shape: (batch_size, gin_channels) | |
Returns: | |
sample: generated mel-spectrogram | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
size = list(mu.size()) | |
size[1] = self.out_channels | |
z = torch.randn(size=size).to(mu.device) * temperature | |
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) | |
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, c=c) | |
def solve_euler(self, x, t_span, mu, mask, c, plot_solutions=False): | |
""" | |
Fixed euler solver for ODEs. | |
Args: | |
x (torch.Tensor): random noise | |
t_span (torch.Tensor): n_timesteps interpolated | |
shape: (n_timesteps + 1,) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
c (torch.Tensor, optional): speaker condition. | |
shape: (batch_size, gin_channels) | |
""" | |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] | |
sol = [] | |
for step in range(1, len(t_span)): | |
dphi_dt = self.estimator(x, mask, mu, t, c) | |
x = x + dt * dphi_dt | |
t = t + dt | |
sol.append(x) | |
if step < len(t_span) - 1: | |
dt = t_span[step + 1] - t | |
if plot_solutions: | |
create_plot_of_all_solutions(sol) | |
return sol[-1] | |
def compute_loss(self, x1, mask, mu, c): | |
"""Computes diffusion loss | |
Args: | |
x1 (torch.Tensor): Target | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): target mask | |
shape: (batch_size, 1, mel_timesteps) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
c (torch.Tensor, optional): speaker condition. | |
Returns: | |
loss: conditional flow matching loss | |
y: conditional flow | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
b, _, t = mu.shape | |
# random timestep | |
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) | |
# sample noise p(x_0) | |
z = torch.randn_like(x1) | |
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 | |
u = x1 - (1 - self.sigma_min) * z | |
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), c), | |
u, | |
reduction="sum") / (torch.sum(mask) * u.shape[1]) | |
return loss, y | |
def create_plot_of_all_solutions(sol): | |
gif_collector = list() | |
for step_index, solution in enumerate(sol): | |
unbatched_solution = solution[0] # remove the batch axis (if there are more than one element in the batch, we only take the first) | |
plot_spec_tensor(unbatched_solution, "tmp", step_index, title=step_index + 1) | |
gif_collector.append(imageio.v2.imread(f"tmp/{step_index}.png")) | |
for _ in range(10): | |
gif_collector.append(gif_collector[-1]) | |
imageio.mimsave("tmp/animation.gif", gif_collector, fps=6, loop=0) | |