Flux9665's picture
initial commit
6faeba1
raw
history blame
3.05 kB
"""
Taken from ESPNet
Adapted by Flux
"""
import torch
from Architectures.GeneralLayers.DurationPredictor import DurationPredictorLoss
from Utility.utils import make_non_pad_mask
class ToucanTTSLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1_criterion = torch.nn.L1Loss(reduction="none")
self.l2_criterion = torch.nn.MSELoss(reduction="none")
self.duration_criterion = DurationPredictorLoss(reduction="none")
def forward(self, predicted_features, gold_features, features_lengths, text_lengths, gold_durations, predicted_durations, predicted_pitch, predicted_energy, gold_pitch, gold_energy):
"""
Args:
predicted_features (Tensor): Batch of outputs before postnets (B, Lmax, odim).
gold_features (Tensor): Batch of target features (B, Lmax, odim).
features_lengths (LongTensor): Batch of the lengths of each target (B,).
gold_durations (LongTensor): Batch of durations (B, Tmax).
gold_pitch (LongTensor): Batch of pitch (B, Tmax).
gold_energy (LongTensor): Batch of energy (B, Tmax).
predicted_durations (LongTensor): Batch of outputs of duration predictor (B, Tmax).
predicted_pitch (LongTensor): Batch of outputs of pitch predictor (B, Tmax).
predicted_energy (LongTensor): Batch of outputs of energy predictor (B, Tmax).
text_lengths (LongTensor): Batch of the lengths of each input (B,).
Returns:
Tensor: L1 loss value.
Tensor: Duration loss value
"""
# calculate losses
distance_loss = self.l1_criterion(predicted_features, gold_features)
duration_loss = self.duration_criterion(predicted_durations, gold_durations)
pitch_loss = self.l2_criterion(predicted_pitch, gold_pitch)
energy_loss = self.l2_criterion(predicted_energy, gold_energy)
# make weighted masks to ensure that long samples and short samples are all equally important
out_masks = make_non_pad_mask(features_lengths).unsqueeze(-1).to(gold_features.device)
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
out_weights /= gold_features.size(0) * gold_features.size(-1)
duration_masks = make_non_pad_mask(text_lengths).to(gold_features.device)
duration_weights = (duration_masks.float() / duration_masks.sum(dim=1, keepdim=True).float())
variance_masks = duration_masks.unsqueeze(-1)
variance_weights = duration_weights.unsqueeze(-1)
# apply weighted masks
distance_loss = distance_loss.mul(out_weights).masked_select(out_masks).sum()
duration_loss = (duration_loss.mul(duration_weights).masked_select(duration_masks).sum())
pitch_loss = pitch_loss.mul(variance_weights).masked_select(variance_masks).sum()
energy_loss = (energy_loss.mul(variance_weights).masked_select(variance_masks).sum())
return distance_loss, duration_loss, pitch_loss, energy_loss