Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import scipy | |
import torch | |
import torch.distributions as dist | |
from torch import nn | |
from torch.nn import functional as F | |
from Architectures.ToucanTTS import glow_utils | |
from Architectures.ToucanTTS.wavenet import WN | |
class ActNorm(nn.Module): | |
def __init__(self, channels, ddi=False, **kwargs): | |
super().__init__() | |
self.channels = channels | |
self.initialized = not ddi | |
self.logs = nn.Parameter(torch.zeros(1, channels, 1)) | |
self.bias = nn.Parameter(torch.zeros(1, channels, 1)) | |
def forward(self, x, x_mask=None, reverse=False, **kwargs): | |
if x_mask is None: | |
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) | |
x_len = torch.sum(x_mask, [1, 2]) | |
if not self.initialized: | |
self.initialize(x, x_mask) | |
self.initialized = True | |
if reverse: | |
z = (x - self.bias) * torch.exp(-self.logs) * x_mask | |
logdet = torch.sum(-self.logs) * x_len | |
else: | |
z = (self.bias + torch.exp(self.logs) * x) * x_mask | |
logdet = torch.sum(self.logs) * x_len # [b] | |
return z, logdet | |
def store_inverse(self): | |
pass | |
def set_ddi(self, ddi): | |
self.initialized = not ddi | |
def initialize(self, x, x_mask): | |
with torch.no_grad(): | |
denom = torch.sum(x_mask, [0, 2]) | |
m = torch.sum(x * x_mask, [0, 2]) / denom | |
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom | |
v = m_sq - (m ** 2) | |
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) | |
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) | |
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) | |
self.bias.data.copy_(bias_init) | |
self.logs.data.copy_(logs_init) | |
class InvConvNear(nn.Module): | |
def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs): | |
super().__init__() | |
assert (n_split % 2 == 0) | |
self.channels = channels | |
self.n_split = n_split | |
self.n_sqz = n_sqz | |
self.no_jacobian = no_jacobian | |
w_init = torch.linalg.qr(torch.FloatTensor(self.n_split, self.n_split).normal_(), 'complete')[0] | |
if torch.det(w_init) < 0: | |
w_init[:, 0] = -1 * w_init[:, 0] | |
self.lu = lu | |
if lu: | |
# LU decomposition can slightly speed up the inverse | |
np_p, np_l, np_u = scipy.linalg.lu(w_init) | |
np_s = np.diag(np_u) | |
np_sign_s = np.sign(np_s) | |
np_log_s = np.log(np.abs(np_s)) | |
np_u = np.triu(np_u, k=1) | |
l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1) | |
eye = np.eye(*w_init.shape, dtype=float) | |
self.register_buffer('p', torch.Tensor(np_p.astype(float))) | |
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) | |
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True) | |
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True) | |
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True) | |
self.register_buffer('l_mask', torch.Tensor(l_mask)) | |
self.register_buffer('eye', torch.Tensor(eye)) | |
else: | |
self.weight = nn.Parameter(w_init) | |
def forward(self, x, x_mask=None, reverse=False, **kwargs): | |
b, c, t = x.size() | |
assert (c % self.n_split == 0) | |
if x_mask is None: | |
x_mask = 1 | |
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t | |
else: | |
x_len = torch.sum(x_mask, [1, 2]) | |
x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t) | |
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t) | |
if self.lu: | |
self.weight, log_s = self._get_weight() | |
logdet = log_s.sum() | |
logdet = logdet * (c / self.n_split) * x_len | |
else: | |
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b] | |
if reverse: | |
if hasattr(self, "weight_inv"): | |
weight = self.weight_inv | |
else: | |
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) | |
logdet = -logdet | |
else: | |
weight = self.weight | |
if self.no_jacobian: | |
logdet = 0 | |
weight = weight.view(self.n_split, self.n_split, 1, 1).to(x.device) | |
z = F.conv2d(x, weight) | |
z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t) | |
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask | |
return z, logdet | |
def _get_weight(self): | |
l, log_s, u = self.l, self.log_s, self.u | |
l = l * self.l_mask + self.eye | |
u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s)) | |
weight = torch.matmul(self.p, torch.matmul(l, u)) | |
return weight, log_s | |
def store_inverse(self): | |
weight, _ = self._get_weight() | |
self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device) | |
class InvConv(nn.Module): | |
def __init__(self, channels, no_jacobian=False, lu=True, **kwargs): | |
super().__init__() | |
w_shape = [channels, channels] | |
w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float) | |
LU_decomposed = lu | |
if not LU_decomposed: | |
# Sample a random orthogonal matrix: | |
self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init))) | |
else: | |
np_p, np_l, np_u = scipy.linalg.lu(w_init) | |
np_s = np.diag(np_u) | |
np_sign_s = np.sign(np_s) | |
np_log_s = np.log(np.abs(np_s)) | |
np_u = np.triu(np_u, k=1) | |
l_mask = np.tril(np.ones(w_shape, dtype=float), -1) | |
eye = np.eye(*w_shape, dtype=float) | |
self.register_buffer('p', torch.Tensor(np_p.astype(float))) | |
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) | |
self.l = nn.Parameter(torch.Tensor(np_l.astype(float))) | |
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float))) | |
self.u = nn.Parameter(torch.Tensor(np_u.astype(float))) | |
self.l_mask = torch.Tensor(l_mask) | |
self.eye = torch.Tensor(eye) | |
self.w_shape = w_shape | |
self.LU = LU_decomposed | |
self.weight = None | |
def get_weight(self, device, reverse): | |
w_shape = self.w_shape | |
self.p = self.p.to(device) | |
self.sign_s = self.sign_s.to(device) | |
self.l_mask = self.l_mask.to(device) | |
self.eye = self.eye.to(device) | |
l = self.l * self.l_mask + self.eye | |
u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s)) | |
dlogdet = self.log_s.sum() | |
if not reverse: | |
w = torch.matmul(self.p, torch.matmul(l, u)) | |
else: | |
l = torch.inverse(l.double()).float() | |
u = torch.inverse(u.double()).float() | |
w = torch.matmul(u, torch.matmul(l, self.p.inverse())) | |
return w.view(w_shape[0], w_shape[1], 1), dlogdet | |
def forward(self, x, x_mask=None, reverse=False, **kwargs): | |
""" | |
log-det = log|abs(|W|)| * pixels | |
""" | |
b, c, t = x.size() | |
if x_mask is None: | |
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t | |
else: | |
x_len = torch.sum(x_mask, [1, 2]) | |
logdet = 0 | |
if not reverse: | |
weight, dlogdet = self.get_weight(x.device, reverse) | |
z = F.conv1d(x, weight) | |
if logdet is not None: | |
logdet = logdet + dlogdet * x_len | |
return z, logdet | |
else: | |
if self.weight is None: | |
weight, dlogdet = self.get_weight(x.device, reverse) | |
else: | |
weight, dlogdet = self.weight, self.dlogdet | |
z = F.conv1d(x, weight) | |
if logdet is not None: | |
logdet = logdet - dlogdet * x_len | |
return z, logdet | |
def store_inverse(self): | |
self.weight, self.dlogdet = self.get_weight('cuda', reverse=True) | |
class CouplingBlock(nn.Module): | |
def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, | |
gin_channels=0, p_dropout=0., sigmoid_scale=False, wn=None, use_weightnorm=True): | |
super().__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.p_dropout = p_dropout | |
self.sigmoid_scale = sigmoid_scale | |
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) | |
if use_weightnorm: | |
start = torch.nn.utils.weight_norm(start) | |
self.start = start | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
end = torch.nn.Conv1d(hidden_channels, in_channels, 1) | |
end.weight.data.zero_() | |
end.bias.data.zero_() | |
self.end = end | |
self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout, use_weightnorm=use_weightnorm) | |
if wn is not None: | |
self.wn.in_layers = wn.in_layers | |
self.wn.res_skip_layers = wn.res_skip_layers | |
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): | |
if x_mask is None: | |
x_mask = 1 | |
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] | |
x = self.start(x_0) * x_mask | |
x = self.wn(x, x_mask, g) | |
out = self.end(x) | |
z_0 = x_0 | |
m = out[:, :self.in_channels // 2, :] | |
logs = out[:, self.in_channels // 2:, :] | |
if self.sigmoid_scale: | |
logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) | |
if reverse: | |
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask | |
logdet = torch.sum(-logs * x_mask, [1, 2]) | |
else: | |
z_1 = (m + torch.exp(logs) * x_1) * x_mask | |
logdet = torch.sum(logs * x_mask, [1, 2]) | |
z = torch.cat([z_0, z_1], 1) | |
return z, logdet | |
def store_inverse(self): | |
self.wn.remove_weight_norm() | |
class Glow(nn.Module): | |
def __init__(self, | |
in_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_blocks, | |
n_layers, | |
condition_integration_projection, | |
p_dropout=0., | |
n_split=4, | |
n_sqz=2, | |
sigmoid_scale=False, | |
text_condition_channels=0, | |
inv_conv_type='near', | |
share_cond_layers=False, | |
share_wn_layers=0, | |
use_weightnorm=True # If weightnorm is set to false, we can deepcopy the module, which we need to be able to do to perform SWA. Without weightnorm, the module will probably take a little longer to converge. | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_blocks = n_blocks | |
self.n_layers = n_layers | |
self.p_dropout = p_dropout | |
self.n_split = n_split | |
self.n_sqz = n_sqz | |
self.sigmoid_scale = sigmoid_scale | |
self.text_condition_channels = text_condition_channels | |
self.share_cond_layers = share_cond_layers | |
self.prior_dist = dist.Normal(0, 1) | |
self.g_proj = condition_integration_projection | |
if text_condition_channels != 0 and share_cond_layers: | |
cond_layer = torch.nn.Conv1d(text_condition_channels * n_sqz, 2 * hidden_channels * n_layers, 1) | |
if use_weightnorm: | |
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') | |
else: | |
self.cond_layer = cond_layer | |
wn = None | |
self.flows = nn.ModuleList() | |
for b in range(n_blocks): | |
self.flows.append(ActNorm(channels=in_channels * n_sqz)) | |
if inv_conv_type == 'near': | |
self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz)) | |
if inv_conv_type == 'invconv': | |
self.flows.append(InvConv(channels=in_channels * n_sqz)) | |
if share_wn_layers > 0: | |
if b % share_wn_layers == 0: | |
wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, text_condition_channels * n_sqz, p_dropout, share_cond_layers, use_weightnorm=use_weightnorm) | |
self.flows.append( | |
CouplingBlock( | |
in_channels * n_sqz, | |
hidden_channels, | |
kernel_size=kernel_size, | |
dilation_rate=dilation_rate, | |
n_layers=n_layers, | |
gin_channels=text_condition_channels * n_sqz, | |
p_dropout=p_dropout, | |
sigmoid_scale=sigmoid_scale, | |
wn=wn, | |
use_weightnorm=use_weightnorm | |
)) | |
def forward(self, tgt_mels, infer, mel_out, encoded_texts, tgt_nonpadding, glow_sampling_temperature=0.7): | |
x_recon = mel_out.transpose(1, 2) | |
g = x_recon | |
B, _, T = g.shape | |
if encoded_texts is not None and self.text_condition_channels != 0: | |
g = torch.cat([g, encoded_texts.transpose(1, 2)], 1) | |
g = self.g_proj(g) | |
prior_dist = self.prior_dist | |
if not infer: | |
y_lengths = tgt_nonpadding.sum(-1) | |
tgt_mels = tgt_mels.transpose(1, 2) | |
z_postflow, ldj = self._forward(tgt_mels, tgt_nonpadding, g=g) | |
ldj = ldj / y_lengths / 80 | |
try: | |
postflow_loss = -prior_dist.log_prob(z_postflow).mean() - ldj.mean() | |
except ValueError: | |
print("log probability of postflow could not be calculated for this step") | |
postflow_loss = None | |
return postflow_loss | |
else: | |
nonpadding = torch.ones_like(x_recon[:, :1, :]) if tgt_nonpadding is None else tgt_nonpadding | |
z_post = torch.randn(x_recon.shape).to(g.device) * glow_sampling_temperature | |
x_recon, _ = self._forward(z_post, nonpadding, g, reverse=True) | |
return x_recon.transpose(1, 2) | |
def _forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False): | |
logdet_tot = 0 | |
if not reverse: | |
flows = self.flows | |
else: | |
flows = reversed(self.flows) | |
if return_hiddens: | |
hs = [] | |
if self.n_sqz > 1: | |
x, x_mask_ = glow_utils.squeeze(x, x_mask, self.n_sqz) | |
if g is not None: | |
g, _ = glow_utils.squeeze(g, x_mask, self.n_sqz) | |
x_mask = x_mask_ | |
if self.share_cond_layers and g is not None: | |
g = self.cond_layer(g) | |
for f in flows: | |
x, logdet = f(x, x_mask, g=g, reverse=reverse) | |
if return_hiddens: | |
hs.append(x) | |
logdet_tot += logdet | |
if self.n_sqz > 1: | |
x, x_mask = glow_utils.unsqueeze(x, x_mask, self.n_sqz) | |
if return_hiddens: | |
return x, logdet_tot, hs | |
return x, logdet_tot | |
def store_inverse(self): | |
def remove_weight_norm(m): | |
try: | |
nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(remove_weight_norm) | |
for f in self.flows: | |
f.store_inverse() | |