Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2020 Nagoya University (Tomoki Hayashi) | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
# Adapted by Florian Lux 2021 | |
import torch | |
import torch.nn.functional as F | |
from Architectures.GeneralLayers.STFT import STFT | |
from Utility.utils import pad_list | |
class EnergyCalculator(torch.nn.Module): | |
def __init__(self, fs=16000, n_fft=1024, win_length=None, hop_length=256, window="hann", center=True, | |
normalized=False, onesided=True, use_token_averaged_energy=True, reduction_factor=1): | |
super().__init__() | |
self.fs = fs | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.window = window | |
self.use_token_averaged_energy = use_token_averaged_energy | |
if use_token_averaged_energy: | |
assert reduction_factor >= 1 | |
self.reduction_factor = reduction_factor | |
self.stft = STFT(n_fft=n_fft, win_length=win_length, hop_length=hop_length, window=window, center=center, normalized=normalized, onesided=onesided) | |
def output_size(self): | |
return 1 | |
def get_parameters(self): | |
return dict(fs=self.fs, n_fft=self.n_fft, hop_length=self.hop_length, window=self.window, win_length=self.win_length, center=self.stft.center, | |
normalized=self.stft.normalized, use_token_averaged_energy=self.use_token_averaged_energy, reduction_factor=self.reduction_factor) | |
def forward(self, input_waves, input_waves_lengths=None, feats_lengths=None, durations=None, | |
durations_lengths=None, norm_by_average=True, text=None): | |
# If not provided, we assume that the inputs have the same length | |
if input_waves_lengths is None: | |
input_waves_lengths = (input_waves.new_ones(input_waves.shape[0], dtype=torch.long) * input_waves.shape[1]) | |
# Domain-conversion: e.g. Stft: time -> time-freq | |
input_stft, energy_lengths = self.stft(input_waves, input_waves_lengths) | |
assert input_stft.dim() >= 4, input_stft.shape | |
assert input_stft.shape[-1] == 2, input_stft.shape | |
# input_stft: (..., F, 2) -> (..., F) | |
input_power = input_stft[..., 0] ** 2 + input_stft[..., 1] ** 2 | |
# sum over frequency (B, N, F) -> (B, N) | |
energy = torch.sqrt(torch.clamp(input_power.sum(dim=2), min=1.0e-10)) | |
# (Optional): Adjust length to match with the features | |
if feats_lengths is not None: | |
energy = [self._adjust_num_frames(e[:el].view(-1), fl) for e, el, fl in zip(energy, energy_lengths, feats_lengths)] | |
energy_lengths = feats_lengths | |
# (Optional): Average by duration to calculate token-wise energy | |
if self.use_token_averaged_energy: | |
energy = [self._average_by_duration(e[:el].view(-1), d, text) for e, el, d in zip(energy, energy_lengths, durations)] | |
energy_lengths = durations_lengths | |
# Padding | |
if isinstance(energy, list): | |
energy = pad_list(energy, 0.0) | |
if norm_by_average: | |
average = energy[0][energy[0] != 0.0].mean() | |
energy = energy / average | |
# Return with the shape (B, T, 1) | |
return energy.unsqueeze(-1), energy_lengths | |
def _average_by_duration(self, x, d, text=None): | |
d_cumsum = F.pad(d.cumsum(dim=0), (1, 0)) | |
x_avg = [x[start:end].mean() if len(x[start:end]) != 0 else x.new_tensor(0.0) for start, end in zip(d_cumsum[:-1], d_cumsum[1:])] | |
# find tokens that are not phoneme and set energy to 0 | |
# while this makes sense, it make sit harder to model, so we leave this out | |
# if text is not None: | |
# for i, vector in enumerate(text): | |
# if vector[get_feature_to_index_lookup()["phoneme"]] == 0: | |
# x_avg[i] = torch.tensor(0.0, device=x.device) | |
return torch.stack(x_avg) | |
def _adjust_num_frames(x, num_frames): | |
if num_frames > len(x): | |
x = F.pad(x, (0, num_frames - len(x))) | |
elif num_frames < len(x): | |
x = x[:num_frames] | |
return x | |