Flux9665's picture
initial commit
6faeba1
raw
history blame
6.03 kB
"""
Taken from ESPNet
"""
import math
import torch
class PositionalEncoding(torch.nn.Module):
"""
Positional encoding.
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
reverse (bool): Whether to reverse the input position.
"""
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
"""
Construct an PositionalEncoding object.
"""
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.reverse = reverse
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0, device=d_model.device).expand(1, max_len))
def extend_pe(self, x):
"""
Reset the positional encodings.
"""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
if self.reverse:
position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x):
"""
Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
class RelPositionalEncoding(torch.nn.Module):
"""
Relative positional encoding module (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""
Construct an PositionalEncoding object.
"""
super(RelPositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model, device=x.device)
pe_negative = torch.zeros(x.size(1), self.d_model, device=x.device)
position = torch.arange(0, x.size(1), dtype=torch.float32, device=x.device).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32, device=x.device) * -(math.log(10000.0) / self.d_model))
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(dtype=x.dtype)
def forward(self, x):
"""
Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
pos_emb = self.pe[:, self.pe.size(1) // 2 - x.size(1) + 1: self.pe.size(1) // 2 + x.size(1), ]
return self.dropout(x), self.dropout(pos_emb)
class ScaledPositionalEncoding(PositionalEncoding):
"""
Scaled positional encoding module.
See Sec. 3.2 https://arxiv.org/abs/1809.08895
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
def reset_parameters(self):
self.alpha.data = torch.tensor(1.0)
def forward(self, x):
"""
Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x + self.alpha * self.pe[:, : x.size(1)]
return self.dropout(x)