Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import torch | |
import torch.multiprocessing | |
from torch.nn.utils.rnn import pad_sequence | |
from torch.optim import RAdam | |
from torch.utils.data.dataloader import DataLoader | |
from tqdm import tqdm | |
from Architectures.Aligner.Aligner import Aligner | |
from Architectures.Aligner.Reconstructor import Reconstructor | |
from Preprocessing.AudioPreprocessor import AudioPreprocessor | |
from Preprocessing.EnCodecAudioPreprocessor import CodecAudioPreprocessor | |
def collate_and_pad(batch): | |
# text, text_len, speech, speech_len, embed | |
return (pad_sequence([datapoint[0] for datapoint in batch], batch_first=True), | |
torch.stack([datapoint[1] for datapoint in batch]).squeeze(1), | |
[datapoint[2] for datapoint in batch], | |
None, | |
torch.stack([datapoint[4] for datapoint in batch]).squeeze()) | |
def train_loop(train_dataset, | |
device, | |
save_directory, | |
batch_size, | |
steps, | |
path_to_checkpoint=None, | |
fine_tune=False, | |
resume=False, | |
debug_img_path=None, | |
use_reconstruction=True, | |
gpu_count=1, | |
rank=0, | |
steps_per_checkpoint=None): | |
""" | |
Args: | |
resume: whether to resume from the most recent checkpoint | |
steps: How many steps to train | |
path_to_checkpoint: reloads a checkpoint to continue training from there | |
fine_tune: whether to load everything from a checkpoint, or only the model parameters | |
train_dataset: Pytorch Dataset Object for train data | |
device: Device to put the loaded tensors on | |
save_directory: Where to save the checkpoints | |
batch_size: How many elements should be loaded at once | |
debug_img_path: where to put images of the training progress if desired | |
use_reconstruction: whether to use the auxiliary reconstruction procedure/loss, which can make the alignment sharper | |
""" | |
os.makedirs(save_directory, exist_ok=True) | |
torch.multiprocessing.set_sharing_strategy('file_system') | |
torch.multiprocessing.set_start_method('spawn', force=True) | |
if steps_per_checkpoint is None: | |
steps_per_checkpoint = len(train_dataset) // batch_size | |
ap = CodecAudioPreprocessor(input_sr=-1, device=device) # only used to transform features into continuous matrices | |
spectrogram_extractor = AudioPreprocessor(input_sr=16000, output_sr=16000, device=device) | |
asr_model = Aligner().to(device) | |
optim_asr = RAdam(asr_model.parameters(), lr=0.0001) | |
tiny_tts = Reconstructor().to(device) | |
optim_tts = RAdam(tiny_tts.parameters(), lr=0.0001) | |
if gpu_count > 1: | |
asr_model.to(rank) | |
tiny_tts.to(rank) | |
asr_model = torch.nn.parallel.DistributedDataParallel( | |
asr_model, | |
device_ids=[rank], | |
output_device=rank, | |
find_unused_parameters=True, | |
).module | |
tiny_tts = torch.nn.parallel.DistributedDataParallel( | |
tiny_tts, | |
device_ids=[rank], | |
output_device=rank, | |
find_unused_parameters=True, | |
).module | |
torch.distributed.barrier() | |
train_sampler = torch.utils.data.RandomSampler(train_dataset) | |
batch_sampler_train = torch.utils.data.BatchSampler(train_sampler, batch_size, drop_last=True) | |
train_loader = DataLoader(dataset=train_dataset, | |
num_workers=0, # unfortunately necessary for big data due to mmap errors | |
batch_sampler=batch_sampler_train, | |
prefetch_factor=None, | |
collate_fn=collate_and_pad) | |
step_counter = 0 | |
loss_sum = list() | |
if resume: | |
previous_checkpoint = os.path.join(save_directory, "aligner.pt") | |
path_to_checkpoint = previous_checkpoint | |
fine_tune = False | |
if path_to_checkpoint is not None: | |
check_dict = torch.load(os.path.join(path_to_checkpoint), map_location=device) | |
asr_model.load_state_dict(check_dict["asr_model"]) | |
tiny_tts.load_state_dict(check_dict["tts_model"]) | |
if not fine_tune: | |
optim_asr.load_state_dict(check_dict["optimizer"]) | |
optim_tts.load_state_dict(check_dict["tts_optimizer"]) | |
step_counter = check_dict["step_counter"] | |
if step_counter > steps: | |
print("Desired steps already reached in loaded checkpoint.") | |
return | |
start_time = time.time() | |
while True: | |
asr_model.train() | |
tiny_tts.train() | |
for batch in tqdm(train_loader): | |
tokens = batch[0].to(device) | |
tokens_len = batch[1].to(device) | |
speaker_embeddings = batch[4].to(device) | |
mels = list() | |
mel_lengths = list() | |
for datapoint in batch[2]: | |
with torch.inference_mode(): | |
# extremely unfortunate that we have to do this over here, but multiprocessing and this don't go together well | |
speech = ap.indexes_to_audio(datapoint.int().to(device)) | |
mel = spectrogram_extractor.audio_to_mel_spec_tensor(speech, explicit_sampling_rate=16000).transpose(0, 1).cpu() | |
speech_len = torch.LongTensor([len(mel)]) | |
mels.append(mel.clone()) | |
mel_lengths.append(speech_len) | |
mel = pad_sequence(mels, batch_first=True).to(device) | |
mel_len = torch.stack(mel_lengths).squeeze(1).to(device) | |
pred = asr_model(mel, mel_len) | |
ctc_loss = asr_model.ctc_loss(pred.transpose(0, 1).log_softmax(2), | |
tokens, | |
mel_len, | |
tokens_len) | |
if use_reconstruction: | |
speaker_embeddings_expanded = torch.nn.functional.normalize(speaker_embeddings).unsqueeze(1).expand(-1, pred.size(1), -1) | |
tts_lambda = min([0.1, step_counter / 10000]) # super simple schedule | |
reconstruction_loss = tiny_tts(x=torch.cat([pred, speaker_embeddings_expanded], dim=-1), | |
# combine ASR prediction with speaker embeddings to allow for reconstruction loss on multiple speakers | |
lens=mel_len, | |
ys=mel) * tts_lambda # reconstruction loss to make the states more distinct | |
loss = ctc_loss + reconstruction_loss | |
else: | |
loss = ctc_loss | |
optim_asr.zero_grad() | |
if use_reconstruction: | |
optim_tts.zero_grad() | |
if gpu_count > 1: | |
torch.distributed.barrier() | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(asr_model.parameters(), 1.0) | |
if use_reconstruction: | |
torch.nn.utils.clip_grad_norm_(tiny_tts.parameters(), 1.0) | |
optim_asr.step() | |
if use_reconstruction: | |
optim_tts.step() | |
loss_sum.append(loss.item()) | |
step_counter += 1 | |
if step_counter % steps_per_checkpoint == 0 and rank == 0: | |
asr_model.eval() | |
torch.save({ | |
"asr_model" : asr_model.state_dict(), | |
"optimizer" : optim_asr.state_dict(), | |
"tts_model" : tiny_tts.state_dict(), | |
"tts_optimizer": optim_tts.state_dict(), | |
"step_counter" : step_counter, | |
}, | |
os.path.join(save_directory, "aligner.pt")) | |
print("Total Loss: {}".format(round(sum(loss_sum) / len(loss_sum), 3))) | |
print("Time elapsed: {} Minutes".format(round((time.time() - start_time) / 60))) | |
print("Steps: {}".format(step_counter)) | |
if debug_img_path is not None: | |
asr_model.inference(features=mel[0][:mel_len[0]], | |
tokens=tokens[0][:tokens_len[0]], | |
save_img_for_debug=debug_img_path + f"/{step_counter}.png", | |
train=True) # for testing | |
asr_model.train() | |
loss_sum = list() | |
if step_counter > steps and step_counter % steps_per_checkpoint == 0: | |
return | |