Flux9665's picture
initial commit
6faeba1
raw
history blame
1.23 kB
import torch
import torch.multiprocessing
from Utility.utils import make_non_pad_mask
class Reconstructor(torch.nn.Module):
def __init__(self,
n_features=128,
num_symbols=145,
speaker_embedding_dim=192,
hidden_dim=256):
super().__init__()
self.in_proj = torch.nn.Linear(num_symbols + speaker_embedding_dim, hidden_dim)
self.hidden_proj = torch.nn.Linear(hidden_dim, hidden_dim)
self.out_proj = torch.nn.Linear(hidden_dim, n_features)
self.l1_criterion = torch.nn.L1Loss(reduction="none")
def forward(self, x, lens, ys):
x = self.in_proj(x)
x = torch.nn.functional.leaky_relu(x)
x = self.hidden_proj(x)
x = torch.nn.functional.leaky_relu(x)
x = self.out_proj(x)
out_masks = make_non_pad_mask(lens).unsqueeze(-1).to(ys.device)
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
out_weights /= ys.size(0) * ys.size(2)
return self.l1_criterion(x, ys).mul(out_weights).masked_select(out_masks).sum()
if __name__ == '__main__':
print(sum(p.numel() for p in Reconstructor().parameters() if p.requires_grad))