Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import matplotlib | |
import numpy as np | |
import pandas as pd | |
import torch | |
matplotlib.rcParams['mathtext.fontset'] = 'stix' | |
matplotlib.rcParams['font.family'] = 'STIXGeneral' | |
matplotlib.rcParams['font.size'] = 7 | |
import matplotlib.pyplot as plt | |
from Utility.utils import load_json_from_path | |
from Utility.storage_config import MODELS_DIR | |
def compute_loss_for_approximated_embeddings(csv_path, iso_lookup, language_embeddings, weighted_avg=False, min_n_langs=5, max_n_langs=30, threshold_percentile=95, loss_fn="MSE"): | |
df = pd.read_csv(csv_path, sep="|") | |
if loss_fn == "L1": | |
loss_fn = torch.nn.L1Loss() | |
else: | |
loss_fn = torch.nn.MSELoss() | |
features_per_closest_lang = 2 | |
# for combined, df has up to 5 features (if containing individual distances) per closest lang + 1 target lang column | |
if "combined_dist_0" in df.columns: | |
if "map_dist_0" in df.columns: | |
features_per_closest_lang += 1 | |
if "asp_dist_0" in df.columns: | |
features_per_closest_lang += 1 | |
if "tree_dist_0" in df.columns: | |
features_per_closest_lang += 1 | |
n_closest = len(df.columns) // features_per_closest_lang | |
distance_type = "combined" | |
# else, df has 2 features per closest lang + 1 target lang column | |
else: | |
n_closest = len(df.columns) // features_per_closest_lang | |
if "map_dist_0" in df.columns: | |
distance_type = "map" | |
elif "tree_dist_0" in df.columns: | |
distance_type = "tree" | |
elif "asp_dist_0" in df.columns: | |
distance_type = "asp" | |
elif "learned_dist_0" in df.columns: | |
distance_type = "learned" | |
elif "oracle_dist_0" in df.columns: | |
distance_type = "oracle" | |
else: | |
distance_type = "random" | |
closest_lang_columns = [f"closest_lang_{i}" for i in range(n_closest)] | |
closest_dist_columns = [f"{distance_type}_dist_{i}" for i in range(n_closest)] | |
closest_lang_columns = closest_lang_columns[:max_n_langs] | |
closest_dist_columns = closest_dist_columns[:max_n_langs] | |
threshold = np.percentile(df[closest_dist_columns[-1]], threshold_percentile) | |
print(f"threshold: {threshold}") | |
all_losses = [] | |
for row in df.itertuples(): | |
try: | |
y = language_embeddings[iso_lookup[-1][row.target_lang]] | |
except KeyError: | |
print(f"KeyError: Unable to retrieve language embedding for {row.target_lang}") | |
continue | |
avg_emb = torch.zeros([16]) | |
dists = [getattr(row, d) for i, d in enumerate(closest_dist_columns) if i < min_n_langs or getattr(row, d) < threshold] | |
langs = [getattr(row, l) for l in closest_lang_columns[:len(dists)]] | |
if weighted_avg: | |
for lang, dist in zip(langs, dists): | |
lang_emb = language_embeddings[iso_lookup[-1][lang]] | |
avg_emb += lang_emb * dist | |
normalization_factor = sum(dists) | |
else: | |
for lang in langs: | |
lang_emb = language_embeddings[iso_lookup[-1][lang]] | |
avg_emb += lang_emb | |
normalization_factor = len(langs) | |
avg_emb /= normalization_factor # normalize | |
current_loss = loss_fn(avg_emb, y).item() | |
all_losses.append(current_loss) | |
return all_losses | |
if __name__ == "__main__": | |
default_model_path = os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt") # MODELS_DIR must be absolute path, the relative path will fail at this location | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default=default_model_path, help="model path that should be used for creating oracle lang emb distance cache") | |
parser.add_argument("--min_n_langs", type=int, default=5, help="minimum amount of languages used for averaging") | |
parser.add_argument("--max_n_langs", type=int, default=30, help="maximum amount of languages used for averaging") | |
parser.add_argument("--threshold_percentile", type=int, default=95, help="percentile of the furthest used languages \ | |
used as cutoff threshold (no langs >= the threshold are used for averagin)") | |
parser.add_argument("--loss_fn", choices=["MSE", "L1"], type=str, default="MSE", help="loss function used") | |
args = parser.parse_args() | |
csv_paths = [ | |
"distance_datasets/dataset_map_top30_furthest.csv", | |
"distance_datasets/dataset_random_top30.csv", | |
"distance_datasets/dataset_asp_top30.csv", | |
"distance_datasets/dataset_tree_top30.csv", | |
"distance_datasets/dataset_map_top30.csv", | |
"distance_datasets/dataset_combined_top30_indiv-dists.csv", | |
"distance_datasets/dataset_learned_top30.csv", | |
"distance_datasets/dataset_oracle_top30.csv", | |
] | |
weighted = [False] | |
lang_embs = torch.load(args.model_path)["model"]["encoder.language_embedding.weight"] | |
lang_embs.requires_grad_(False) | |
iso_lookup = load_json_from_path("iso_lookup.json") | |
losses_of_multiple_datasets = [] | |
OUT_DIR = "plots" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
fig, ax = plt.subplots(figsize=(3.15022, 3.15022*(2/3)), constrained_layout=True) | |
plt.ylabel(args.loss_fn) | |
for i, csv_path in enumerate(csv_paths): | |
print(f"csv_path: {os.path.basename(csv_path)}") | |
for condition in weighted: | |
losses = compute_loss_for_approximated_embeddings(csv_path, | |
iso_lookup, | |
lang_embs, | |
condition, | |
min_n_langs=args.min_n_langs, | |
max_n_langs=args.max_n_langs, | |
threshold_percentile=args.threshold_percentile, | |
loss_fn=args.loss_fn) | |
print(f"weighted average: {condition} | mean loss: {np.mean(losses)}") | |
losses_of_multiple_datasets.append(losses) | |
bp_dict = ax.boxplot(losses_of_multiple_datasets, | |
labels = [ | |
"map furthest", | |
"random", | |
"inv. ASP", | |
"tree", | |
"map", | |
"avg", | |
"meta-learned", | |
"oracle", | |
], | |
patch_artist=True, | |
boxprops=dict(facecolor = "lightblue", | |
), | |
showfliers=False, | |
widths=0.45 | |
) | |
# major ticks every 0.1, minor ticks every 0.05, between 0.0 and 0.6 | |
major_ticks = np.arange(0, 0.6, 0.1) | |
minor_ticks = np.arange(0, 0.6, 0.05) | |
ax.set_yticks(major_ticks) | |
ax.set_yticks(minor_ticks, minor=True) | |
# horizontal grid lines for minor and major ticks | |
ax.grid(which='both', linestyle='-', color='lightgray', linewidth=0.3, axis='y') | |
ax.set_aspect(4.5) | |
plt.title(f"min. {args.min_n_langs} kNN, max. {args.max_n_langs}\nthreshold: {args.threshold_percentile}th-percentile distance of {args.max_n_langs}th-closest language") | |
plt.xticks(rotation=45) | |
plt.savefig(os.path.join(OUT_DIR, "example_boxplot_release.pdf"), bbox_inches='tight') | |