File size: 4,442 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Taken from ESPNet
"""

import torch
from torch.functional import stft as torch_stft
from torch_complex.tensor import ComplexTensor

from Utility.utils import make_pad_mask


class STFT(torch.nn.Module):

    def __init__(self, n_fft=512,
                 win_length=None,
                 hop_length=128,
                 window="hann",
                 center=True,
                 normalized=False,
                 onesided=True):
        super().__init__()
        self.n_fft = n_fft
        if win_length is None:
            self.win_length = n_fft
        else:
            self.win_length = win_length
        self.hop_length = hop_length
        self.center = center
        self.normalized = normalized
        self.onesided = onesided
        self.window = window

    def extra_repr(self):
        return (f"n_fft={self.n_fft}, "
                f"win_length={self.win_length}, "
                f"hop_length={self.hop_length}, "
                f"center={self.center}, "
                f"normalized={self.normalized}, "
                f"onesided={self.onesided}")

    def forward(self, input_wave, ilens=None):
        """
        STFT forward function.
        Args:
            input_wave: (Batch, Nsamples) or (Batch, Nsample, Channels)
            ilens: (Batch)
        Returns:
            output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2)
        """
        bs = input_wave.size(0)

        if input_wave.dim() == 3:
            multi_channel = True
            # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample)
            input_wave = input_wave.transpose(1, 2).reshape(-1, input_wave.size(1))
        else:
            multi_channel = False

        # output: (Batch, Freq, Frames, 2=real_imag)
        # or (Batch, Channel, Freq, Frames, 2=real_imag)
        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            window = window_func(self.win_length, dtype=input_wave.dtype, device=input_wave.device)
        else:
            window = None

        complex_output = torch_stft(input=input_wave,
                                    n_fft=self.n_fft,
                                    win_length=self.win_length,
                                    hop_length=self.hop_length,
                                    center=self.center,
                                    window=window,
                                    normalized=self.normalized,
                                    onesided=self.onesided,
                                    return_complex=True)
        output = torch.view_as_real(complex_output)
        # output: (Batch, Freq, Frames, 2=real_imag)
        # -> (Batch, Frames, Freq, 2=real_imag)
        output = output.transpose(1, 2)
        if multi_channel:
            # output: (Batch * Channel, Frames, Freq, 2=real_imag)
            # -> (Batch, Frame, Channel, Freq, 2=real_imag)
            output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(1, 2)

        if ilens is not None:
            if self.center:
                pad = self.win_length // 2
                ilens = ilens + 2 * pad

            olens = torch.div((ilens - self.win_length), self.hop_length, rounding_mode='trunc') + 1
            output.masked_fill_(make_pad_mask(olens, output, 1), 0.0)
        else:
            olens = None

        return output, olens

    def inverse(self, input, ilens=None):
        """
        Inverse STFT.
        Args:
            input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F)
            ilens: (batch,)
        Returns:
            wavs: (batch, samples)
            ilens: (batch,)
        """
        istft = torch.functional.istft

        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            window = window_func(self.win_length, dtype=input.dtype, device=input.device)
        else:
            window = None

        if isinstance(input, ComplexTensor):
            input = torch.stack([input.real, input.imag], dim=-1)
        assert input.shape[-1] == 2
        input = input.transpose(1, 2)

        wavs = istft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=window, center=self.center,
                     normalized=self.normalized, onesided=self.onesided, length=ilens.max() if ilens is not None else ilens)

        return wavs, ilens