Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,343 Bytes
6faeba1 6a79837 6faeba1 6a79837 6faeba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
"""
Taken from ESPNet, modified by Florian Lux
"""
import json
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.multiprocessing
from matplotlib.lines import Line2D
import Modules.GeneralLayers.ConditionalLayerNorm
from Preprocessing.TextFrontend import ArticulatoryCombinedTextFrontend
from Preprocessing.TextFrontend import get_language_id
def integrate_with_utt_embed(hs, utt_embeddings, projection, embedding_training):
if not embedding_training:
# concat hidden states with spk embeds and then apply projection
embeddings_expanded = torch.nn.functional.normalize(utt_embeddings).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = projection(torch.cat([hs, embeddings_expanded], dim=-1))
else:
# in this case we don't want to normalize the embeddings to not impair the gradient flow
hs = projection(hs, utt_embeddings)
return hs
def float2pcm(sig, dtype='int16'):
"""
https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
"""
sig = np.asarray(sig)
if sig.dtype.kind != 'f':
raise TypeError("'sig' must be a float array")
dtype = np.dtype(dtype)
if dtype.kind not in 'iu':
raise TypeError("'dtype' must be an integer type")
i = np.iinfo(dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)
def make_estimated_durations_usable_for_inference(xs, offset=1.0):
return torch.clamp(torch.round(xs.exp() - offset), min=0).long()
def cut_to_multiple_of_n(x, n=4, return_diff=False, seq_dim=1):
max_frames = x.shape[seq_dim] // n * n
if return_diff:
return x[:, :max_frames], x.shape[seq_dim] - max_frames
return x[:, :max_frames]
def pad_to_multiple_of_n(x, n=4, seq_dim=1, pad_value=0):
max_frames = ((x.shape[seq_dim] // n) + 1) * n
diff = max_frames - x.shape[seq_dim]
return torch.nn.functional.pad(x, [0, 0, 0, diff, 0, 0], mode="constant", value=pad_value)
@torch.inference_mode()
def plot_progress_spec_toucantts(net,
device,
save_dir,
step,
lang,
default_emb,
run_stochastic):
tf = ArticulatoryCombinedTextFrontend(language=lang)
sentence = tf.get_example_sentence(lang=lang)
if sentence is None:
return None
phoneme_vector = tf.string_to_tensor(sentence).squeeze(0).to(device)
mel, durations, pitch, energy = net.inference(text=phoneme_vector,
return_duration_pitch_energy=True,
utterance_embedding=default_emb,
lang_id=get_language_id(lang).to(device),
run_stochastic=run_stochastic)
plot_code_spec(pitch, energy, sentence, durations, mel, os.path.join(save_dir, "visualization"), tf, step)
return os.path.join(os.path.join(save_dir, "visualization"), f"{step}.png")
def plot_code_spec(pitch, energy, sentence, durations, mel, save_path, tf, step):
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(9, 8))
expanded_pitch = list()
expanded_energy = list()
for p, e, d in zip(pitch.cpu().squeeze().numpy(), energy.cpu().squeeze().numpy(), durations.cpu().numpy()):
for _ in range(d):
expanded_energy.append(e)
expanded_pitch.append(p)
pitch = expanded_pitch
energy = expanded_energy
spec_plot_axis = ax[1]
pitch_and_energy_axis = ax[0]
spec_plot_axis.imshow(mel.cpu().numpy(), origin="lower", cmap='GnBu')
pitch_and_energy_axis.yaxis.set_visible(False)
pitch_and_energy_axis.xaxis.set_visible(False)
spec_plot_axis.yaxis.set_visible(False)
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy())
spec_plot_axis.xaxis.grid(True, which='minor')
spec_plot_axis.set_xticks(label_positions, minor=False)
phones = tf.get_phone_string(sentence, for_plot_labels=True)
spec_plot_axis.set_xticklabels(phones)
word_boundaries = list()
for label_index, phone in enumerate(phones):
if phone == "|":
word_boundaries.append(label_positions[label_index])
try:
prev_word_boundary = 0
word_label_positions = list()
for word_boundary in word_boundaries:
word_label_positions.append((word_boundary + prev_word_boundary) / 2)
prev_word_boundary = word_boundary
word_label_positions.append((duration_splits[-1] + prev_word_boundary) / 2)
secondary_ax = spec_plot_axis.secondary_xaxis('bottom')
secondary_ax.tick_params(axis="x", direction="out", pad=24)
secondary_ax.set_xticks(word_label_positions, minor=False)
secondary_ax.set_xticklabels(sentence.split())
secondary_ax.tick_params(axis='x', colors='orange')
secondary_ax.xaxis.label.set_color('orange')
except ValueError:
spec_plot_axis.set_title(sentence)
except IndexError:
spec_plot_axis.set_title(sentence)
spec_plot_axis.vlines(x=duration_splits, colors="green", linestyles="solid", ymin=0, ymax=15, linewidth=1.0)
spec_plot_axis.vlines(x=word_boundaries, colors="orange", linestyles="solid", ymin=0, ymax=15, linewidth=2.0)
pitch_and_energy_axis.plot(pitch, color="blue")
pitch_and_energy_axis.plot(energy, color="green")
spec_plot_axis.set_aspect("auto")
pitch_and_energy_axis.set_aspect("auto")
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.95, wspace=0.0, hspace=0.0)
os.makedirs(save_path, exist_ok=True)
plt.savefig(os.path.join(save_path, f"{step}.png"), dpi=100)
plt.clf()
plt.close()
def plot_spec_tensor(spec, save_path, name, title=None):
fig, spec_plot_axis = plt.subplots(nrows=1, ncols=1, figsize=(9, 4))
spec_plot_axis.imshow(spec.detach().cpu().numpy(), origin="lower", cmap='GnBu')
spec_plot_axis.yaxis.set_visible(False)
spec_plot_axis.set_aspect("auto")
if title is not None:
spec_plot_axis.set_title(title)
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.95 if title is None else .85, wspace=0.0, hspace=0.0)
os.makedirs(save_path, exist_ok=True)
plt.savefig(os.path.join(save_path, f"{name}.png"), dpi=100)
plt.clf()
plt.close()
def cumsum_durations(durations):
out = [0]
for duration in durations:
out.append(duration + out[-1])
centers = list()
for index, _ in enumerate(out):
if index + 1 < len(out):
centers.append((out[index] + out[index + 1]) // 2)
return out, centers
def delete_old_checkpoints(checkpoint_dir, keep=5):
checkpoint_list = list()
for el in os.listdir(checkpoint_dir):
if el.endswith(".pt"):
try:
checkpoint_list.append(int(el.replace("checkpoint_", "").replace(".pt", "")))
except ValueError:
pass
if len(checkpoint_list) <= keep:
return
else:
checkpoint_list.sort(reverse=False)
checkpoints_to_delete = [os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(step)) for step in
checkpoint_list[:-keep]]
for old_checkpoint in checkpoints_to_delete:
os.remove(os.path.join(old_checkpoint))
def plot_grad_flow(named_parameters):
"""
Plots the gradients flowing through different layers in the net during training.
Can be used for checking for possible gradient vanishing / exploding problems.
Usage: Plug this function after loss.backwards() and unscaling as
"plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow
"""
ave_grads = []
max_grads = []
layers = []
for n, p in named_parameters:
if p.requires_grad and ("bias" not in n):
layers.append(n)
ave_grads.append(p.grad.abs().mean())
max_grads.append(p.grad.abs().max())
plt.bar(np.arange(len(max_grads)), max_grads, alpha=0.1, lw=1, color="c")
plt.bar(np.arange(len(max_grads)), ave_grads, alpha=0.1, lw=1, color="b")
plt.hlines(0, 0, len(ave_grads) + 1, lw=2, color="k")
plt.xticks(range(0, len(ave_grads), 1), layers, rotation="vertical")
plt.xlim(left=0, right=len(ave_grads))
plt.ylim(bottom=-0.001, top=0.02) # zoom in on the lower gradient regions
plt.xlabel("Layers")
plt.ylabel("Gradient")
plt.title("Gradient Flow")
plt.grid(True)
plt.legend([Line2D([0], [0], color="c", lw=4),
Line2D([0], [0], color="b", lw=4),
Line2D([0], [0], color="k", lw=4)], ['max-gradient', 'mean-gradient', 'zero-gradient'])
plt.show()
def get_most_recent_checkpoint(checkpoint_dir, verbose=True):
checkpoint_list = list()
for el in os.listdir(checkpoint_dir):
if el.endswith(".pt") and el != "best.pt" and el != "embedding_function.pt":
try:
checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
except ValueError:
pass
if len(checkpoint_list) == 0:
print("No previous checkpoints found, cannot reload.")
return None
checkpoint_list.sort(reverse=True)
if verbose:
print("Reloading checkpoint_{}.pt".format(checkpoint_list[0]))
return os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(checkpoint_list[0]))
def make_pad_mask(lengths, xs=None, length_dim=-1, device=None):
"""
Make mask tensor containing indices of padded part.
Args:
lengths (LongTensor or List): Batch of lengths (B,).
xs (Tensor, optional): The reference tensor.
If set, masks will be the same shape as this tensor.
length_dim (int, optional): Dimension indicator of the above tensor.
See the example.
Returns:
Tensor: Mask tensor containing indices of padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
"""
if length_dim == 0:
raise ValueError("length_dim cannot be 0: {}".format(length_dim))
if not isinstance(lengths, list):
lengths = lengths.tolist()
bs = int(len(lengths))
if xs is None:
maxlen = int(max(lengths))
else:
maxlen = xs.size(length_dim)
if device is not None:
seq_range = torch.arange(0, maxlen, dtype=torch.int64, device=device)
else:
seq_range = torch.arange(0, maxlen, dtype=torch.int64)
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
if xs is not None:
assert xs.size(0) == bs, (xs.size(0), bs)
if length_dim < 0:
length_dim = xs.dim() + length_dim
# ind = (:, None, ..., None, :, , None, ..., None)
ind = tuple(slice(None) if i in (0, length_dim) else None for i in range(xs.dim()))
mask = mask[ind].expand_as(xs).to(xs.device)
return mask
def make_non_pad_mask(lengths, xs=None, length_dim=-1, device=None):
"""
Make mask tensor containing indices of non-padded part.
Args:
lengths (LongTensor or List): Batch of lengths (B,).
xs (Tensor, optional): The reference tensor.
If set, masks will be the same shape as this tensor.
length_dim (int, optional): Dimension indicator of the above tensor.
See the example.
Returns:
ByteTensor: mask tensor containing indices of padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
"""
return ~make_pad_mask(lengths, xs, length_dim, device=device)
def initialize(model, init):
"""
Initialize weights of a neural network module.
Parameters are initialized using the given method or distribution.
Args:
model: Target.
init: Method of initialization.
"""
# weight init
for p in model.parameters():
if p.dim() > 1:
if init == "xavier_uniform":
torch.nn.init.xavier_uniform_(p.data)
elif init == "xavier_normal":
torch.nn.init.xavier_normal_(p.data)
elif init == "kaiming_uniform":
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
elif init == "kaiming_normal":
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
else:
raise ValueError("Unknown initialization: " + init)
# bias init
for p in model.parameters():
if p.dim() == 1:
p.data.zero_()
# reset some modules with default init
for m in model.modules():
if isinstance(m, (torch.nn.Embedding,
torch.nn.LayerNorm,
Modules.GeneralLayers.ConditionalLayerNorm.ConditionalLayerNorm,
Modules.GeneralLayers.ConditionalLayerNorm.SequentialWrappableConditionalLayerNorm
)):
m.reset_parameters()
def pad_list(xs, pad_value):
"""
Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
"""
n_batch = len(xs)
max_len = max(x.size(0) for x in xs)
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
for i in range(n_batch):
pad[i, : xs[i].size(0)] = xs[i]
return pad
def curve_smoother(curve):
if len(curve) < 3:
return curve
new_curve = list()
for index in range(len(curve)):
if curve[index] != 0:
current_value = curve[index]
if index != len(curve) - 1:
if curve[index + 1] != 0:
next_value = curve[index + 1]
else:
next_value = curve[index]
if index != 0:
if curve[index - 1] != 0:
prev_value = curve[index - 1]
else:
prev_value = curve[index]
else:
prev_value = curve[index]
smooth_value = (current_value * 3 + prev_value + next_value) / 5
new_curve.append(smooth_value)
else:
new_curve.append(0)
return new_curve
def remove_elements(tensor, indexes):
# Create a boolean mask where True represents the elements to keep
print("\n\n\n")
print(tensor.shape)
print(indexes)
mask = torch.ones(tensor.size(0), dtype=torch.bool)
mask[indexes] = False
# Use the mask to select the elements to keep
result = tensor[mask, :]
print(result.shape)
return result
def load_json_from_path(path):
with open(path, "r", encoding="utf8") as f:
obj = json.loads(f.read())
return obj
if __name__ == '__main__':
data = np.random.randn(50)
plt.plot(data, color="b")
smooth = curve_smoother(data)
plt.plot(smooth, color="g")
plt.show()
|