File size: 4,750 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# adapted from https://github.com/facebookresearch/barlowtwins

from math import exp

import torch
import torch.nn.functional as F
from torch.autograd import Variable


class RedundancyReduction(torch.nn.Module):

    def __init__(self, lambd=1e-5, vector_dimensions=256):
        super().__init__()
        self.lambd = lambd
        self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False)

    def forward(self, z1, z2):
        c = self.bn(z1).T @ self.bn(z2)
        c.div_(z1.size(0))
        off_diag = off_diagonal(c).pow_(2).sum()
        return self.lambd * off_diag


class BarlowTwinsLoss(torch.nn.Module):

    def __init__(self, lambd=1e-5, vector_dimensions=256):
        super().__init__()
        self.lambd = lambd
        self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False)

    def forward(self, z1, z2):
        c = self.bn(z1).T @ self.bn(z2)
        c.div_(z1.size(0))
        on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
        off_diag = off_diagonal(c).pow_(2).sum()
        loss = on_diag + self.lambd * off_diag
        return loss


def off_diagonal(x):
    # return a flattened view of the off-diagonal elements of a square matrix
    n, m = x.shape
    assert n == m
    return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()


class TripletLoss(torch.nn.Module):

    def __init__(self, margin):
        super().__init__()
        self.cosine_similarity = torch.nn.CosineSimilarity()
        self.margin = margin

    def forward(self,
                anchor_embeddings,
                positive_embeddings,
                negative_embeddings):
        positive_distance = 1 - self.cosine_similarity(anchor_embeddings, positive_embeddings)
        negative_distance = 1 - self.cosine_similarity(anchor_embeddings, negative_embeddings)

        losses = torch.max(positive_distance - negative_distance + self.margin,
                           torch.full_like(positive_distance, 0))
        return torch.mean(losses)


# The following is taken from https://github.com/NATSpeech/NATSpeech/blob/aef3aa8899c82e40a28e4f59d559b46b18ba87e8/utils/metrics/ssim.py

def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
    return gauss / gauss.sum()


def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window


def _ssim(img1, img2, window, window_size, channel, size_average=True):
    mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
    mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2

    sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2

    C1 = 0.01 ** 2
    C2 = 0.03 ** 2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

    if size_average:
        return ssim_map.mean()
    else:
        return ssim_map.mean(1)


class SSIM(torch.nn.Module):
    """
    Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim
    """

    def __init__(self, window_size=11, size_average=True):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = 1
        self.window = create_window(window_size, self.channel)

    def forward(self, img1, img2):
        (_, channel, _, _) = img1.size()

        if channel == self.channel and self.window.data.type() == img1.data.type():
            window = self.window
        else:
            window = create_window(self.window_size, channel)

            if img1.is_cuda:
                window = window.cuda(img1.get_device())
            window = window.type_as(img1)

            self.window = window
            self.channel = channel

        return _ssim(img1, img2, window, self.window_size, channel, self.size_average)


window = None


def ssim(img1, img2, window_size=11, size_average=True):
    (_, channel, _, _) = img1.size()
    global window
    if window is None:
        window = create_window(window_size, channel)
        if img1.is_cuda:
            window = window.cuda(img1.get_device())
        window = window.type_as(img1)
    return _ssim(img1, img2, window, window_size, channel, size_average)