File size: 6,695 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import json
import os.path

import torch
from geopy.distance import geodesic
from tqdm import tqdm

from Preprocessing.multilinguality.MetricMetaLearner import create_learned_cache
from Utility.storage_config import MODELS_DIR
from Utility.utils import load_json_from_path


class CacheCreator:
    def __init__(self, cache_root="."):
        self.iso_codes = list(load_json_from_path(os.path.join(cache_root, "iso_to_fullname.json")).keys())
        self.iso_lookup = load_json_from_path(os.path.join(cache_root, "iso_lookup.json"))
        self.cache_root = cache_root
        self.pairs = list()  # ignore order, collect all language pairs
        for index_1 in tqdm(range(len(self.iso_codes)), desc="Collecting language pairs"):
            for index_2 in range(index_1, len(self.iso_codes)):
                self.pairs.append((self.iso_codes[index_1], self.iso_codes[index_2]))

    def create_tree_cache(self, cache_root="."):
        iso_to_family_memberships = load_json_from_path(os.path.join(cache_root, "iso_to_memberships.json"))

        self.pair_to_tree_similarity = dict()
        self.pair_to_depth = dict()
        for pair in tqdm(self.pairs, desc="Generating tree pairs"):
            self.pair_to_tree_similarity[pair] = len(set(iso_to_family_memberships[pair[0]]).intersection(set(iso_to_family_memberships[pair[1]])))
        lang_1_to_lang_2_to_tree_dist = dict()
        for pair in tqdm(self.pair_to_tree_similarity):
            lang_1 = pair[0]
            lang_2 = pair[1]
            if self.pair_to_tree_similarity[pair] == 2:
                dist = 1.0
            else:
                dist = 1.0 - (self.pair_to_tree_similarity[pair] / max(len(iso_to_family_memberships[pair[0]]), len(iso_to_family_memberships[pair[1]])))
            if lang_1 not in lang_1_to_lang_2_to_tree_dist.keys():
                lang_1_to_lang_2_to_tree_dist[lang_1] = dict()
            lang_1_to_lang_2_to_tree_dist[lang_1][lang_2] = dist
        with open(os.path.join(cache_root, 'lang_1_to_lang_2_to_tree_dist.json'), 'w', encoding='utf-8') as f:
            json.dump(lang_1_to_lang_2_to_tree_dist, f, ensure_ascii=False, indent=4)

    def create_map_cache(self, cache_root="."):
        self.pair_to_map_dist = dict()
        iso_to_long_lat = load_json_from_path(os.path.join(cache_root, "iso_to_long_lat.json"))
        for pair in tqdm(self.pairs, desc="Generating map pairs"):
            try:
                long_1, lat_1 = iso_to_long_lat[pair[0]]
                long_2, lat_2 = iso_to_long_lat[pair[1]]
                geodesic((lat_1, long_1), (lat_2, long_2))
                self.pair_to_map_dist[pair] = geodesic((lat_1, long_1), (lat_2, long_2)).miles
            except KeyError:
                pass
        lang_1_to_lang_2_to_map_dist = dict()
        for pair in self.pair_to_map_dist:
            lang_1 = pair[0]
            lang_2 = pair[1]
            dist = self.pair_to_map_dist[pair]
            if lang_1 not in lang_1_to_lang_2_to_map_dist.keys():
                lang_1_to_lang_2_to_map_dist[lang_1] = dict()
            lang_1_to_lang_2_to_map_dist[lang_1][lang_2] = dist

        with open(os.path.join(cache_root, 'lang_1_to_lang_2_to_map_dist.json'), 'w', encoding='utf-8') as f:
            json.dump(lang_1_to_lang_2_to_map_dist, f, ensure_ascii=False, indent=4)

    def create_oracle_cache(self, model_path, cache_root="."):
        """Oracle language-embedding distance of supervised languages is only used for evaluation, not usable for zero-shot.

        Note: The generated oracle cache is only valid for the given `model_path`!"""
        loss_fn = torch.nn.MSELoss(reduction="mean")
        self.pair_to_oracle_dist = dict()
        lang_embs = torch.load(model_path)["model"]["encoder.language_embedding.weight"]
        lang_embs.requires_grad_(False)
        for pair in tqdm(self.pairs, desc="Generating oracle pairs"):
            try:
                dist = loss_fn(lang_embs[self.iso_lookup[-1][pair[0]]], lang_embs[self.iso_lookup[-1][pair[1]]]).item()
                self.pair_to_oracle_dist[pair] = dist
            except KeyError:
                pass
        lang_1_to_lang_2_oracle_dist = dict()
        for pair in self.pair_to_oracle_dist:
            lang_1 = pair[0]
            lang_2 = pair[1]
            dist = self.pair_to_oracle_dist[pair]
            if lang_1 not in lang_1_to_lang_2_oracle_dist.keys():
                lang_1_to_lang_2_oracle_dist[lang_1] = dict()
            lang_1_to_lang_2_oracle_dist[lang_1][lang_2] = dist
        with open(os.path.join(cache_root, "lang_1_to_lang_2_to_oracle_dist.json"), "w", encoding="utf-8") as f:
            json.dump(lang_1_to_lang_2_oracle_dist, f, ensure_ascii=False, indent=4)

    def create_learned_cache(self, model_path, cache_root="."):
        """Note: The generated learned distance cache is only valid for the given `model_path`!"""
        create_learned_cache(model_path, cache_root=cache_root)

    def create_required_files(self, model_path, create_oracle=False):
        if not os.path.exists(os.path.join(self.cache_root, "lang_1_to_lang_2_to_tree_dist.json")):
            self.create_tree_cache(cache_root="Preprocessing/multilinguality")
        if not os.path.exists(os.path.join(self.cache_root, "lang_1_to_lang_2_to_map_dist.json")):
            self.create_map_cache(cache_root="Preprocessing/multilinguality")
        if not os.path.exists(os.path.join(self.cache_root, "asp_dict.pkl")):
            raise FileNotFoundError("asp_dict.pkl must be downloaded separately.")
        if not os.path.exists(os.path.join(self.cache_root, "lang_1_to_lang_2_to_learned_dist.json")):
            self.create_learned_cache(model_path=model_path, cache_root="Preprocessing/multilinguality")
        if create_oracle:
            if not os.path.exists(os.path.join(self.cache_root, "lang_1_to_lang_2_to_oracle_dist.json")):
                if not model_path:
                    raise ValueError("model_path is required for creating oracle cache.")
                self.create_oracle_cache(model_path=args.model_path, cache_root="Preprocessing/multilinguality")
        print("All required cache files exist.")


if __name__ == '__main__':
    default_model_path = os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt")  # MODELS_DIR must be absolute path, the relative path will fail at this location
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", "-m", type=str, default=default_model_path, help="model path that should be used for creating oracle lang emb distance cache")
    args = parser.parse_args()
    cc = CacheCreator()
    cc.create_required_files(args.model_path, create_oracle=True)