File size: 27,309 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import json
import os
import pickle
import random

import numpy as np

from Preprocessing.multilinguality.create_distance_lookups import CacheCreator
from Utility.utils import load_json_from_path


class SimilaritySolver:
    def __init__(self,
                 tree_dist=None,
                 map_dist=None,
                 asp_dict=None,
                 largest_value_map_dist=None,
                 tree_dist_path=None,
                 map_dist_path=None,
                 asp_dict_path=None,
                 iso_to_fullname=None,
                 iso_to_fullname_path=None,
                 learned_dist=None,
                 learned_dist_path=None,
                 oracle_dist=None,
                 oracle_dist_path=None,
                 force_reload=False):
        self.lang_1_to_lang_2_to_tree_dist = tree_dist
        self.lang_1_to_lang_2_to_map_dist = map_dist
        self.largest_value_map_dist = largest_value_map_dist
        self.asp_dict = asp_dict
        self.lang_1_to_lang_2_to_learned_dist = learned_dist
        self.lang_1_to_lang_2_to_oracle_dist = oracle_dist
        self.iso_to_fullname = iso_to_fullname
        iso_to_fullname_path = "iso_to_fullname.json" if not iso_to_fullname_path else iso_to_fullname_path

        if force_reload:
            tree_dist_path = 'lang_1_to_lang_2_to_tree_dist.json' if not tree_dist_path else tree_dist_path
            self.lang_1_to_lang_2_to_tree_dist = load_json_from_path(tree_dist_path)
            map_dist_path = 'lang_1_to_lang_2_to_map_dist.json' if not map_dist_path else map_dist_path
            self.lang_1_to_lang_2_to_map_dist = load_json_from_path(map_dist_path)
            self.largest_value_map_dist = 0.0
            for _, values in self.lang_1_to_lang_2_to_map_dist.items():
                for _, value in values.items():
                    self.largest_value_map_dist = max(self.largest_value_map_dist, value)            
            learned_dist_path = 'lang_1_to_lang_2_to_learned_dist.json' if not learned_dist_path else tree_dist_path
            self.lang_1_to_lang_2_to_learned_dist = load_json_from_path(learned_dist_path)
            oracle_dist_path = 'lang_1_to_lang_2_to_oracle_dist.json' if not oracle_dist_path else oracle_dist_path
            self.lang_1_to_lang_2_to_oracle_dist = load_json_from_path(oracle_dist_path)
            asp_dict_path = "asp_dict.pkl" if not asp_dict_path else asp_dict_path
            with open(asp_dict_path, "rb") as f:
                self.asp_dict = pickle.load(f)
            self.iso_to_fullname = load_json_from_path(iso_to_fullname_path)


        pop_keys = list()
        for el in self.iso_to_fullname:
            if "Sign Language" in self.iso_to_fullname[el]:
                pop_keys.append(el)
        for pop_key in pop_keys:
            self.iso_to_fullname.pop(pop_key)
        with open(iso_to_fullname_path, 'w', encoding='utf-8') as f:
            json.dump(self.iso_to_fullname, f, ensure_ascii=False, indent=4)
  
    def find_closest_combined_distance(self, 
                              lang, 
                              supervised_langs, 
                              combined_distance="average", 
                              k=50, 
                              individual_distances=False, 
                              verbose=False, 
                              excluded_features=[],
                              find_furthest=False):
        """Find the k closest languages according to a combination of map distance, tree distance, and ASP distance.
        Returns a dict of dicts (`individual_distances` optional) of the format {"supervised_lang_1": 
                                                {"euclidean_distance": 5.39, "individual_distances": [<map_dist>, <tree_dist>, <asp_dist>]},
                                              "supervised_lang_2":
                                                {...}, ...}"""         

        if combined_distance not in ["average", "euclidean"]:
            raise ValueError("distance needs to be `average` or `euclidean`")
        combined_dict = {}
        supervised_langs = set(supervised_langs) if isinstance(supervised_langs, list) else supervised_langs
        # avoid error with `urk`
        if "urk" in supervised_langs:
            supervised_langs.remove("urk")
        if lang in supervised_langs:
            supervised_langs.remove(lang)
        for sup_lang in supervised_langs:
            map_dist = self.get_map_distance(lang, sup_lang)
            tree_dist = self.get_tree_distance(lang, sup_lang)
            asp_score = self.get_asp(lang, sup_lang, self.asp_dict)
            # if getting one of the scores failed, ignore this language
            if None in {map_dist, tree_dist, asp_score}:
                continue           
            
            combined_dict[sup_lang] = {}
            asp_dist = 1 - asp_score # turn into dist since other 2 are also dists
            dist_list = []
            if "map" not in excluded_features:
                dist_list.append(map_dist)
            if "asp" not in excluded_features:
                dist_list.append(asp_dist)
            if "tree" not in excluded_features:
                dist_list.append(tree_dist)
            dist_array = np.array(dist_list)
            if combined_distance == "euclidean":
                euclidean_dist = np.sqrt(np.sum(dist_array**2)) # no subtraction since lang has dist [0,0,0]
                combined_dict[sup_lang]["combined_distance"] = euclidean_dist
            elif combined_distance == "average":
                avg_dist = np.mean(dist_array)
                combined_dict[sup_lang]["combined_distance"] = avg_dist

            if individual_distances:
                combined_dict[sup_lang]["individual_distances"] = [map_dist, tree_dist, asp_dist]

        results = dict(sorted(combined_dict.items(), key=lambda x: x[1]["combined_distance"], reverse=find_furthest)[:k])
        if verbose:
            sorted_by = "closest" if not find_furthest else "furthest"
            print(f"{k} {sorted_by} languages to {self.iso_to_fullname[lang]} w.r.t. the combined features are:")
            for result in results:
                try:
                    print(self.iso_to_fullname[result])
                    print(results[result])
                except KeyError:
                    print("Full Name of Language Missing")
        return results

    def find_closest(self, distance_type, lang, supervised_langs, k=50, find_furthest=False, random_seed=42, verbose=False):
        """Find the k nearest languages in terms of a given feature.
        Returns a dict {language: distance} sorted by distance."""
        distance_types = ["learned", "map", "tree", "asp", "random", "oracle"]
        if distance_type not in distance_types:
            raise ValueError(f"Invalid distance type '{distance_type}'. Expected one of {distance_types}")        
        langs_to_dist = dict()
        supervised_langs = set(supervised_langs) if isinstance(supervised_langs, list) else supervised_langs
        # avoid error with `urk`
        if "urk" in supervised_langs:
            supervised_langs.remove("urk")
        if lang in supervised_langs:
            supervised_langs.remove(lang)

        if distance_type == "learned":
            for sup_lang in supervised_langs:
                dist = self.get_learned_distance(lang, sup_lang)
                if dist is not None:
                    langs_to_dist[sup_lang] = dist
        elif distance_type == "map":
            for sup_lang in supervised_langs:                
                dist = self.get_map_distance(lang, sup_lang)
                if dist is not None:
                    langs_to_dist[sup_lang] = dist
        elif distance_type == "tree":
            for sup_lang in supervised_langs:                                
                dist = self.get_tree_distance(lang, sup_lang)
                if dist is not None:
                    langs_to_dist[sup_lang] = dist
        elif distance_type == "asp":
            for sup_lang in supervised_langs:                                
                asp_score = self.get_asp(lang, sup_lang, self.asp_dict)
                if asp_score is not None:
                    asp_dist = 1 - asp_score
                    langs_to_dist[sup_lang] = asp_dist
        elif distance_type == "oracle":
            for sup_lang in supervised_langs:
                dist = self.get_oracle_distance(lang, sup_lang)
                if dist is not None:
                    langs_to_dist[sup_lang] = dist
        elif distance_type == "random":
            random.seed(random_seed)
            random_langs = random.sample(supervised_langs, k)
            # create dict with all 0.5 values
            random_dict = {rand_lang: 0.5 for rand_lang in random_langs}
            return random_dict

        # sort results by distance and only keep the first k entries
        results = dict(sorted(langs_to_dist.items(), key=lambda x: x[1], reverse=find_furthest)[:k])
        if verbose:
            sorted_by = "closest" if not find_furthest else "furthest"            
            print(f"{k} {sorted_by} languages to {self.iso_to_fullname[lang]} w.r.t. {distance_type} are:")
            for result in results:
                try:
                    print(self.iso_to_fullname[result])
                    print(results[result])
                except KeyError:
                    print("Full Name of Language Missing")
        return results

    def get_map_distance(self, lang_1, lang_2):
        """Returns normalized map distance between two languages.
        If no value can be retrieved, returns None."""
        try:
            dist = self.lang_1_to_lang_2_to_map_dist[lang_1][lang_2]
        except KeyError:
            try:
                dist = self.lang_1_to_lang_2_to_map_dist[lang_2][lang_1]
            except KeyError:
                return None
        dist = dist / self.largest_value_map_dist # normalize
        return dist
    
    def get_tree_distance(self, lang_1, lang_2):
        """Returns normalized tree distance between two languages.
        If no value can be retrieved, returns None."""
        try:
            dist = self.lang_1_to_lang_2_to_tree_dist[lang_1][lang_2]
        except KeyError:
            try:
                dist = self.lang_1_to_lang_2_to_tree_dist[lang_2][lang_1]
            except KeyError:
                return None
        return dist

    def get_learned_distance(self, lang_1, lang_2):
        """Returns normalized learned distance between two languages.
        If no value can be retrieved, returns None."""
        try:
            dist = self.lang_1_to_lang_2_to_learned_dist[lang_1][lang_2]
        except KeyError:
            try:
                dist = self.lang_1_to_lang_2_to_learned_dist[lang_2][lang_1]
            except KeyError:
                return None
        return dist
    
    def get_oracle_distance(self, lang_1, lang_2):
        """Returns oracle language embedding distance (MSE) between two languages.
        If no value can be retrieved, returns None."""
        try:
            dist = self.lang_1_to_lang_2_to_oracle_dist[lang_1][lang_2]
        except KeyError:
            try:
                dist = self.lang_1_to_lang_2_to_oracle_dist[lang_2][lang_1]
            except KeyError:
                return None
        return dist    

    def get_asp(self, lang_a, lang_b, path_to_dict):
        """Look up and return the ASP between lang_a and lang_b from (pre-calculated) dictionary at path_to_dict.
        Note: This is a SIMILARITY measure, NOT a distance!"""
        asp_dict = load_asp_dict(path_to_dict)
        lang_list = list(asp_dict) # list of all languages, to get lang_b's index
        lang_b_idx = lang_list.index(lang_b) # lang_b's index
        try:
            asp = asp_dict[lang_a][lang_b_idx] # asp_dict's structure: {lang: numpy array of all corresponding ASPs}
        except KeyError:
            return None
        return asp


def load_asp_dict(path_to_dict):
    """If the input is already a dict, return it, else load dict from input path and return the dict."""
    if isinstance(path_to_dict, dict):
        return path_to_dict
    else:
        with open(path_to_dict, 'rb') as dictfile:
            asp_dict = pickle.load(dictfile)
        return asp_dict




if __name__ == '__main__':
    if not (os.path.exists("lang_1_to_lang_2_to_map_dist.json") and \
            os.path.exists("lang_1_to_lang_2_to_tree_dist.json") and \
            os.path.exists("lang_1_to_lang_2_to_oracle_dist.json") and \
            os.path.exists("lang_1_to_lang_2_to_learned_dist.json") and \
            os.path.exists("asp_dict.pkl")):
        CacheCreator()

    ss = SimilaritySolver()

    ss.find_closest("asp", 
                    "aym", 
                    ['eng', 'deu', 'fra', 'spa', 'cmn', 'por', 'pol', 'ita', 'nld', 'ell', 'fin', 'vie', 'rus', 'hun', 'bem', 'swh', 'amh', 'wol', 'mal', 'chv', 'iba', 'jav', 'fon', 'hau', 'lbb', 'kik', 'lin', 'lug', 'luo', 'sxb', 'yor', 'nya', 'loz', 'toi', 'afr', 'arb', 'asm', 'ast', 'azj', 'bel', 'bul', 'ben', 'bos', 'cat',
                    'ceb', 'sdh', 'ces', 'cym', 'dan', 'ekk', 'pes', 'fil', 'gle', 'glg', 'guj', 'heb', 'hin', 'hrv', 'hye', 'ind', 'ibo', 'isl', 'kat', 'kam', 'kea', 'kaz', 'khm', 'kan', 'kor', 'ltz', 'lao', 'lit', 'lvs', 'mri', 'mkd', 'xng', 'mar', 'zsm', 'mlt', 'oci', 'ory', 'pan', 'pst', 'ron', 'snd', 'slk', 'slv', 'sna',
                    'som', 'srp', 'swe', 'tam', 'tel', 'tgk', 'tur', 'ukr', 'umb', 'urd', 'uzn', 'bhd', 'kfs', 'dgo', 'gbk', 'bgc', 'xnr', 'kfx', 'mjl', 'bfz', 'acf', 'bss', 'inb', 'nca', 'quh', 'wap', 'acr', 'bus', 'dgr', 'maz', 'nch', 'qul', 'tav', 'wmw', 'acu', 'byr', 'dik', 'iou', 'mbb', 'ncj', 'qvc', 'tbc', 'xed', 'agd',
                    'bzh', 'djk', 'ipi', 'mbc', 'ncl', 'qve', 'tbg', 'xon', 'agg', 'bzj', 'dop', 'jac', 'mbh', 'ncu', 'qvh', 'tbl', 'xtd', 'agn', 'caa', 'jic', 'mbj', 'ndj', 'qvm', 'tbz', 'xtm', 'agr', 'cab', 'emp', 'jiv', 'mbt', 'nfa', 'qvn', 'tca', 'yaa', 'agu', 'cap', 'jvn', 'mca', 'ngp', 'qvs', 'tcs', 'yad', 'aia', 'car',
                    'ese', 'mcb', 'ngu', 'qvw', 'yal', 'cax', 'kaq', 'mcd', 'nhe', 'qvz', 'tee', 'ycn', 'ake', 'cbc', 'far', 'mco', 'qwh', 'yka', 'alp', 'cbi', 'kdc', 'mcp', 'nhu', 'qxh', 'ame', 'cbr', 'gai', 'kde', 'mcq', 'nhw', 'qxn', 'tew', 'yre', 'amf', 'cbs', 'gam', 'kdl', 'mdy', 'nhy', 'qxo', 'tfr', 'yva', 'amk', 'cbt',
                    'geb', 'kek', 'med', 'nin', 'rai', 'zaa', 'apb', 'cbu', 'glk', 'ken', 'mee', 'nko', 'rgu', 'zab', 'apr', 'cbv', 'meq', 'tgo', 'zac', 'arl', 'cco', 'gng', 'kje', 'met', 'nlg', 'rop', 'tgp', 'zad', 'grc', 'klv', 'mgh', 'nnq', 'rro', 'zai', 'ata', 'cek', 'gub', 'kmu', 'mib', 'noa', 'ruf', 'tna', 'zam', 'atb',
                    'cgc', 'guh', 'kne', 'mie', 'not', 'rug', 'tnk', 'zao', 'atg', 'chf', 'knf', 'mih', 'npl', 'tnn', 'zar', 'awb', 'chz', 'gum', 'knj', 'mil', 'sab', 'tnp', 'zas', 'cjo', 'guo', 'ksr', 'mio', 'obo', 'seh', 'toc', 'zav', 'azg', 'cle', 'gux', 'kue', 'mit', 'omw', 'sey', 'tos', 'zaw', 'azz', 'cme', 'gvc', 'kvn',
                    'miz', 'ood', 'sgb', 'tpi', 'zca', 'bao', 'cni', 'gwi', 'kwd', 'mkl', 'shp', 'tpt', 'zga', 'bba', 'cnl', 'gym', 'kwf', 'mkn', 'ote', 'sja', 'trc', 'ziw', 'bbb', 'cnt', 'gyr', 'kwi', 'mop', 'otq', 'snn', 'ttc', 'zlm', 'cof', 'hat', 'kyc', 'mox', 'pab', 'snp', 'tte', 'zos', 'bgt', 'con', 'kyf', 'mpm', 'pad',
                    'tue', 'zpc', 'bjr', 'cot', 'kyg', 'mpp', 'soy', 'tuf', 'zpl', 'bjv', 'cpa', 'kyq', 'mpx', 'pao', 'tuo', 'zpm', 'bjz', 'cpb', 'hlt', 'kyz', 'mqb', 'pib', 'spp', 'zpo', 'bkd', 'cpu', 'hns', 'lac', 'mqj', 'pir', 'spy', 'txq', 'zpu', 'blz', 'crn', 'hto', 'lat', 'msy', 'pjt', 'sri', 'txu', 'zpz', 'bmr', 'cso',
                    'hub', 'lex', 'mto', 'pls', 'srm', 'udu', 'ztq', 'bmu', 'ctu', 'lgl', 'muy', 'poi', 'srn', 'zty', 'bnp', 'cuc', 'lid', 'mxb', 'stp', 'upv', 'zyp', 'boa', 'cui', 'huu', 'mxq', 'sus', 'ura', 'boj', 'cuk', 'huv', 'llg', 'mxt', 'poy', 'suz', 'urb', 'box', 'cwe', 'hvn', 'prf', 'urt', 'bpr', 'cya', 'ign', 'lww',
                    'myk', 'ptu', 'usp', 'bps', 'daa', 'ikk', 'maj', 'myy', 'vid', 'bqc', 'dah', 'nab', 'qub', 'tac', 'bqp', 'ded', 'imo', 'maq', 'nas', 'quf', 'taj', 'vmy'],
                    k=5, verbose=True)
    
    ss.find_closest_combined_distance("aym",
                                      ['eng', 'deu', 'fra', 'spa', 'cmn', 'por', 'pol', 'ita', 'nld', 'ell', 'fin', 'vie', 'rus', 'hun', 'bem', 'swh', 'amh', 'wol', 'mal', 'chv', 'iba', 'jav', 'fon', 'hau', 'lbb', 'kik', 'lin', 'lug', 'luo', 'sxb', 'yor', 'nya', 'loz', 'toi', 'afr', 'arb', 'asm', 'ast', 'azj', 'bel', 'bul', 'ben', 'bos', 'cat',
                                        'ceb', 'sdh', 'ces', 'cym', 'dan', 'ekk', 'pes', 'fil', 'gle', 'glg', 'guj', 'heb', 'hin', 'hrv', 'hye', 'ind', 'ibo', 'isl', 'kat', 'kam', 'kea', 'kaz', 'khm', 'kan', 'kor', 'ltz', 'lao', 'lit', 'lvs', 'mri', 'mkd', 'xng', 'mar', 'zsm', 'mlt', 'oci', 'ory', 'pan', 'pst', 'ron', 'snd', 'slk', 'slv', 'sna',
                                        'som', 'srp', 'swe', 'tam', 'tel', 'tgk', 'tur', 'ukr', 'umb', 'urd', 'uzn', 'bhd', 'kfs', 'dgo', 'gbk', 'bgc', 'xnr', 'kfx', 'mjl', 'bfz', 'acf', 'bss', 'inb', 'nca', 'quh', 'wap', 'acr', 'bus', 'dgr', 'maz', 'nch', 'qul', 'tav', 'wmw', 'acu', 'byr', 'dik', 'iou', 'mbb', 'ncj', 'qvc', 'tbc', 'xed', 'agd',
                                        'bzh', 'djk', 'ipi', 'mbc', 'ncl', 'qve', 'tbg', 'xon', 'agg', 'bzj', 'dop', 'jac', 'mbh', 'ncu', 'qvh', 'tbl', 'xtd', 'agn', 'caa', 'jic', 'mbj', 'ndj', 'qvm', 'tbz', 'xtm', 'agr', 'cab', 'emp', 'jiv', 'mbt', 'nfa', 'qvn', 'tca', 'yaa', 'agu', 'cap', 'jvn', 'mca', 'ngp', 'qvs', 'tcs', 'yad', 'aia', 'car',
                                        'ese', 'mcb', 'ngu', 'qvw', 'yal', 'cax', 'kaq', 'mcd', 'nhe', 'qvz', 'tee', 'ycn', 'ake', 'cbc', 'far', 'mco', 'qwh', 'yka', 'alp', 'cbi', 'kdc', 'mcp', 'nhu', 'qxh', 'ame', 'cbr', 'gai', 'kde', 'mcq', 'nhw', 'qxn', 'tew', 'yre', 'amf', 'cbs', 'gam', 'kdl', 'mdy', 'nhy', 'qxo', 'tfr', 'yva', 'amk', 'cbt',
                                        'geb', 'kek', 'med', 'nin', 'rai', 'zaa', 'apb', 'cbu', 'glk', 'ken', 'mee', 'nko', 'rgu', 'zab', 'apr', 'cbv', 'meq', 'tgo', 'zac', 'arl', 'cco', 'gng', 'kje', 'met', 'nlg', 'rop', 'tgp', 'zad', 'grc', 'klv', 'mgh', 'nnq', 'rro', 'zai', 'ata', 'cek', 'gub', 'kmu', 'mib', 'noa', 'ruf', 'tna', 'zam', 'atb',
                                        'cgc', 'guh', 'kne', 'mie', 'not', 'rug', 'tnk', 'zao', 'atg', 'chf', 'knf', 'mih', 'npl', 'tnn', 'zar', 'awb', 'chz', 'gum', 'knj', 'mil', 'sab', 'tnp', 'zas', 'cjo', 'guo', 'ksr', 'mio', 'obo', 'seh', 'toc', 'zav', 'azg', 'cle', 'gux', 'kue', 'mit', 'omw', 'sey', 'tos', 'zaw', 'azz', 'cme', 'gvc', 'kvn',
                                        'miz', 'ood', 'sgb', 'tpi', 'zca', 'bao', 'cni', 'gwi', 'kwd', 'mkl', 'shp', 'tpt', 'zga', 'bba', 'cnl', 'gym', 'kwf', 'mkn', 'ote', 'sja', 'trc', 'ziw', 'bbb', 'cnt', 'gyr', 'kwi', 'mop', 'otq', 'snn', 'ttc', 'zlm', 'cof', 'hat', 'kyc', 'mox', 'pab', 'snp', 'tte', 'zos', 'bgt', 'con', 'kyf', 'mpm', 'pad',
                                        'tue', 'zpc', 'bjr', 'cot', 'kyg', 'mpp', 'soy', 'tuf', 'zpl', 'bjv', 'cpa', 'kyq', 'mpx', 'pao', 'tuo', 'zpm', 'bjz', 'cpb', 'hlt', 'kyz', 'mqb', 'pib', 'spp', 'zpo', 'bkd', 'cpu', 'hns', 'lac', 'mqj', 'pir', 'spy', 'txq', 'zpu', 'blz', 'crn', 'hto', 'lat', 'msy', 'pjt', 'sri', 'txu', 'zpz', 'bmr', 'cso',
                                        'hub', 'lex', 'mto', 'pls', 'srm', 'udu', 'ztq', 'bmu', 'ctu', 'lgl', 'muy', 'poi', 'srn', 'zty', 'bnp', 'cuc', 'lid', 'mxb', 'stp', 'upv', 'zyp', 'boa', 'cui', 'huu', 'mxq', 'sus', 'ura', 'boj', 'cuk', 'huv', 'llg', 'mxt', 'poy', 'suz', 'urb', 'box', 'cwe', 'hvn', 'prf', 'urt', 'bpr', 'cya', 'ign', 'lww',
                                        'myk', 'ptu', 'usp', 'bps', 'daa', 'ikk', 'maj', 'myy', 'vid', 'bqc', 'dah', 'nab', 'qub', 'tac', 'bqp', 'ded', 'imo', 'maq', 'nas', 'quf', 'taj', 'vmy'], 
                                      distance="average", 
                                      k=5, 
                                      verbose=True)

    ss.find_closest("map", 
                    "aym", 
                    ['eng', 'deu', 'fra', 'spa', 'cmn', 'por', 'pol', 'ita', 'nld', 'ell', 'fin', 'vie', 'rus', 'hun', 'bem', 'swh', 'amh', 'wol', 'mal', 'chv', 'iba', 'jav', 'fon', 'hau', 'lbb', 'kik', 'lin', 'lug', 'luo', 'sxb', 'yor', 'nya', 'loz', 'toi', 'afr', 'arb', 'asm', 'ast', 'azj', 'bel', 'bul', 'ben', 'bos', 'cat',
                    'ceb', 'sdh', 'ces', 'cym', 'dan', 'ekk', 'pes', 'fil', 'gle', 'glg', 'guj', 'heb', 'hin', 'hrv', 'hye', 'ind', 'ibo', 'isl', 'kat', 'kam', 'kea', 'kaz', 'khm', 'kan', 'kor', 'ltz', 'lao', 'lit', 'lvs', 'mri', 'mkd', 'xng', 'mar', 'zsm', 'mlt', 'oci', 'ory', 'pan', 'pst', 'ron', 'snd', 'slk', 'slv', 'sna',
                    'som', 'srp', 'swe', 'tam', 'tel', 'tgk', 'tur', 'ukr', 'umb', 'urd', 'uzn', 'bhd', 'kfs', 'dgo', 'gbk', 'bgc', 'xnr', 'kfx', 'mjl', 'bfz', 'acf', 'bss', 'inb', 'nca', 'quh', 'wap', 'acr', 'bus', 'dgr', 'maz', 'nch', 'qul', 'tav', 'wmw', 'acu', 'byr', 'dik', 'iou', 'mbb', 'ncj', 'qvc', 'tbc', 'xed', 'agd',
                    'bzh', 'djk', 'ipi', 'mbc', 'ncl', 'qve', 'tbg', 'xon', 'agg', 'bzj', 'dop', 'jac', 'mbh', 'ncu', 'qvh', 'tbl', 'xtd', 'agn', 'caa', 'jic', 'mbj', 'ndj', 'qvm', 'tbz', 'xtm', 'agr', 'cab', 'emp', 'jiv', 'mbt', 'nfa', 'qvn', 'tca', 'yaa', 'agu', 'cap', 'jvn', 'mca', 'ngp', 'qvs', 'tcs', 'yad', 'aia', 'car',
                    'ese', 'mcb', 'ngu', 'qvw', 'yal', 'cax', 'kaq', 'mcd', 'nhe', 'qvz', 'tee', 'ycn', 'ake', 'cbc', 'far', 'mco', 'qwh', 'yka', 'alp', 'cbi', 'kdc', 'mcp', 'nhu', 'qxh', 'ame', 'cbr', 'gai', 'kde', 'mcq', 'nhw', 'qxn', 'tew', 'yre', 'amf', 'cbs', 'gam', 'kdl', 'mdy', 'nhy', 'qxo', 'tfr', 'yva', 'amk', 'cbt',
                    'geb', 'kek', 'med', 'nin', 'rai', 'zaa', 'apb', 'cbu', 'glk', 'ken', 'mee', 'nko', 'rgu', 'zab', 'apr', 'cbv', 'meq', 'tgo', 'zac', 'arl', 'cco', 'gng', 'kje', 'met', 'nlg', 'rop', 'tgp', 'zad', 'grc', 'klv', 'mgh', 'nnq', 'rro', 'zai', 'ata', 'cek', 'gub', 'kmu', 'mib', 'noa', 'ruf', 'tna', 'zam', 'atb',
                    'cgc', 'guh', 'kne', 'mie', 'not', 'rug', 'tnk', 'zao', 'atg', 'chf', 'knf', 'mih', 'npl', 'tnn', 'zar', 'awb', 'chz', 'gum', 'knj', 'mil', 'sab', 'tnp', 'zas', 'cjo', 'guo', 'ksr', 'mio', 'obo', 'seh', 'toc', 'zav', 'azg', 'cle', 'gux', 'kue', 'mit', 'omw', 'sey', 'tos', 'zaw', 'azz', 'cme', 'gvc', 'kvn',
                    'miz', 'ood', 'sgb', 'tpi', 'zca', 'bao', 'cni', 'gwi', 'kwd', 'mkl', 'shp', 'tpt', 'zga', 'bba', 'cnl', 'gym', 'kwf', 'mkn', 'ote', 'sja', 'trc', 'ziw', 'bbb', 'cnt', 'gyr', 'kwi', 'mop', 'otq', 'snn', 'ttc', 'zlm', 'cof', 'hat', 'kyc', 'mox', 'pab', 'snp', 'tte', 'zos', 'bgt', 'con', 'kyf', 'mpm', 'pad',
                    'tue', 'zpc', 'bjr', 'cot', 'kyg', 'mpp', 'soy', 'tuf', 'zpl', 'bjv', 'cpa', 'kyq', 'mpx', 'pao', 'tuo', 'zpm', 'bjz', 'cpb', 'hlt', 'kyz', 'mqb', 'pib', 'spp', 'zpo', 'bkd', 'cpu', 'hns', 'lac', 'mqj', 'pir', 'spy', 'txq', 'zpu', 'blz', 'crn', 'hto', 'lat', 'msy', 'pjt', 'sri', 'txu', 'zpz', 'bmr', 'cso',
                    'hub', 'lex', 'mto', 'pls', 'srm', 'udu', 'ztq', 'bmu', 'ctu', 'lgl', 'muy', 'poi', 'srn', 'zty', 'bnp', 'cuc', 'lid', 'mxb', 'stp', 'upv', 'zyp', 'boa', 'cui', 'huu', 'mxq', 'sus', 'ura', 'boj', 'cuk', 'huv', 'llg', 'mxt', 'poy', 'suz', 'urb', 'box', 'cwe', 'hvn', 'prf', 'urt', 'bpr', 'cya', 'ign', 'lww',
                    'myk', 'ptu', 'usp', 'bps', 'daa', 'ikk', 'maj', 'myy', 'vid', 'bqc', 'dah', 'nab', 'qub', 'tac', 'bqp', 'ded', 'imo', 'maq', 'nas', 'quf', 'taj', 'vmy'],
                    k=5)

    ss.find_closest("tree", 
                    "aym", 
                    ['eng', 'deu', 'fra', 'spa', 'cmn', 'por', 'pol', 'ita', 'nld', 'ell', 'fin', 'vie', 'rus', 'hun', 'bem', 'swh', 'amh', 'wol', 'mal', 'chv', 'iba', 'jav', 'fon', 'hau', 'lbb', 'kik', 'lin', 'lug', 'luo', 'sxb', 'yor', 'nya', 'loz', 'toi', 'afr', 'arb', 'asm', 'ast', 'azj', 'bel', 'bul', 'ben', 'bos', 'cat',
                    'ceb', 'sdh', 'ces', 'cym', 'dan', 'ekk', 'pes', 'fil', 'gle', 'glg', 'guj', 'heb', 'hin', 'hrv', 'hye', 'ind', 'ibo', 'isl', 'kat', 'kam', 'kea', 'kaz', 'khm', 'kan', 'kor', 'ltz', 'lao', 'lit', 'lvs', 'mri', 'mkd', 'xng', 'mar', 'zsm', 'mlt', 'oci', 'ory', 'pan', 'pst', 'ron', 'snd', 'slk', 'slv', 'sna',
                    'som', 'srp', 'swe', 'tam', 'tel', 'tgk', 'tur', 'ukr', 'umb', 'urd', 'uzn', 'bhd', 'kfs', 'dgo', 'gbk', 'bgc', 'xnr', 'kfx', 'mjl', 'bfz', 'acf', 'bss', 'inb', 'nca', 'quh', 'wap', 'acr', 'bus', 'dgr', 'maz', 'nch', 'qul', 'tav', 'wmw', 'acu', 'byr', 'dik', 'iou', 'mbb', 'ncj', 'qvc', 'tbc', 'xed', 'agd',
                    'bzh', 'djk', 'ipi', 'mbc', 'ncl', 'qve', 'tbg', 'xon', 'agg', 'bzj', 'dop', 'jac', 'mbh', 'ncu', 'qvh', 'tbl', 'xtd', 'agn', 'caa', 'jic', 'mbj', 'ndj', 'qvm', 'tbz', 'xtm', 'agr', 'cab', 'emp', 'jiv', 'mbt', 'nfa', 'qvn', 'tca', 'yaa', 'agu', 'cap', 'jvn', 'mca', 'ngp', 'qvs', 'tcs', 'yad', 'aia', 'car',
                    'ese', 'mcb', 'ngu', 'qvw', 'yal', 'cax', 'kaq', 'mcd', 'nhe', 'qvz', 'tee', 'ycn', 'ake', 'cbc', 'far', 'mco', 'qwh', 'yka', 'alp', 'cbi', 'kdc', 'mcp', 'nhu', 'qxh', 'ame', 'cbr', 'gai', 'kde', 'mcq', 'nhw', 'qxn', 'tew', 'yre', 'amf', 'cbs', 'gam', 'kdl', 'mdy', 'nhy', 'qxo', 'tfr', 'yva', 'amk', 'cbt',
                    'geb', 'kek', 'med', 'nin', 'rai', 'zaa', 'apb', 'cbu', 'glk', 'ken', 'mee', 'nko', 'rgu', 'zab', 'apr', 'cbv', 'meq', 'tgo', 'zac', 'arl', 'cco', 'gng', 'kje', 'met', 'nlg', 'rop', 'tgp', 'zad', 'grc', 'klv', 'mgh', 'nnq', 'rro', 'zai', 'ata', 'cek', 'gub', 'kmu', 'mib', 'noa', 'ruf', 'tna', 'zam', 'atb',
                    'cgc', 'guh', 'kne', 'mie', 'not', 'rug', 'tnk', 'zao', 'atg', 'chf', 'knf', 'mih', 'npl', 'tnn', 'zar', 'awb', 'chz', 'gum', 'knj', 'mil', 'sab', 'tnp', 'zas', 'cjo', 'guo', 'ksr', 'mio', 'obo', 'seh', 'toc', 'zav', 'azg', 'cle', 'gux', 'kue', 'mit', 'omw', 'sey', 'tos', 'zaw', 'azz', 'cme', 'gvc', 'kvn',
                    'miz', 'ood', 'sgb', 'tpi', 'zca', 'bao', 'cni', 'gwi', 'kwd', 'mkl', 'shp', 'tpt', 'zga', 'bba', 'cnl', 'gym', 'kwf', 'mkn', 'ote', 'sja', 'trc', 'ziw', 'bbb', 'cnt', 'gyr', 'kwi', 'mop', 'otq', 'snn', 'ttc', 'zlm', 'cof', 'hat', 'kyc', 'mox', 'pab', 'snp', 'tte', 'zos', 'bgt', 'con', 'kyf', 'mpm', 'pad',
                    'tue', 'zpc', 'bjr', 'cot', 'kyg', 'mpp', 'soy', 'tuf', 'zpl', 'bjv', 'cpa', 'kyq', 'mpx', 'pao', 'tuo', 'zpm', 'bjz', 'cpb', 'hlt', 'kyz', 'mqb', 'pib', 'spp', 'zpo', 'bkd', 'cpu', 'hns', 'lac', 'mqj', 'pir', 'spy', 'txq', 'zpu', 'blz', 'crn', 'hto', 'lat', 'msy', 'pjt', 'sri', 'txu', 'zpz', 'bmr', 'cso',
                    'hub', 'lex', 'mto', 'pls', 'srm', 'udu', 'ztq', 'bmu', 'ctu', 'lgl', 'muy', 'poi', 'srn', 'zty', 'bnp', 'cuc', 'lid', 'mxb', 'stp', 'upv', 'zyp', 'boa', 'cui', 'huu', 'mxq', 'sus', 'ura', 'boj', 'cuk', 'huv', 'llg', 'mxt', 'poy', 'suz', 'urb', 'box', 'cwe', 'hvn', 'prf', 'urt', 'bpr', 'cya', 'ign', 'lww',
                    'myk', 'ptu', 'usp', 'bps', 'daa', 'ikk', 'maj', 'myy', 'vid', 'bqc', 'dah', 'nab', 'qub', 'tac', 'bqp', 'ded', 'imo', 'maq', 'nas', 'quf', 'taj', 'vmy'],
                     k=10, find_furthest=True)