File size: 16,773 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
6a79837
 
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import itertools
import os

import librosa
import matplotlib.pyplot as plt
import pyloudnorm
import sounddevice
import soundfile
import torch
from speechbrain.pretrained import EncoderClassifier
from torchaudio.transforms import Resample

from Modules.ToucanTTS.InferenceToucanTTS import ToucanTTS
from Modules.Vocoder.HiFiGAN_Generator import HiFiGAN
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from Preprocessing.TextFrontend import ArticulatoryCombinedTextFrontend
from Preprocessing.TextFrontend import get_language_id
from Utility.storage_config import MODELS_DIR
from Utility.utils import cumsum_durations
from Utility.utils import float2pcm


class ToucanTTSInterface(torch.nn.Module):

    def __init__(self,
                 device="cpu",  # device that everything computes on. If a cuda device is available, this can speed things up by an order of magnitude.
                 tts_model_path=os.path.join(MODELS_DIR, f"ToucanTTS_Meta", "best.pt"),  # path to the ToucanTTS checkpoint or just a shorthand if run standalone
                 vocoder_model_path=os.path.join(MODELS_DIR, f"Vocoder", "best.pt"),  # path to the Vocoder checkpoint
                 language="eng",  # initial language of the model, can be changed later with the setter methods
                 ):
        super().__init__()
        self.device = device
        if not tts_model_path.endswith(".pt"):
            # default to shorthand system
            tts_model_path = os.path.join(MODELS_DIR, f"ToucanTTS_{tts_model_path}", "best.pt")

        ################################
        #   build text to phone        #
        ################################
        self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True, device=device)

        #####################################
        #   load phone to features model    #
        #####################################
        checkpoint = torch.load(tts_model_path, map_location='cpu')
        self.phone2mel = ToucanTTS(weights=checkpoint["model"], config=checkpoint["config"])
        with torch.no_grad():
            self.phone2mel.store_inverse_all()  # this also removes weight norm
        self.phone2mel = self.phone2mel.to(torch.device(device))

        ######################################
        #  load features to style models     #
        ######################################
        self.speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb",
                                                                           run_opts={"device": str(device)},
                                                                           savedir=os.path.join(MODELS_DIR, "Embedding", "speechbrain_speaker_embedding_ecapa"))

        ################################
        #  load mel to wave model      #
        ################################
        vocoder_checkpoint = torch.load(vocoder_model_path, map_location="cpu")
        self.vocoder = HiFiGAN()
        self.vocoder.load_state_dict(vocoder_checkpoint)
        self.vocoder = self.vocoder.to(device).eval()
        self.vocoder.remove_weight_norm()
        self.meter = pyloudnorm.Meter(24000)

        ################################
        #  set defaults                #
        ################################
        self.default_utterance_embedding = checkpoint["default_emb"].to(self.device)
        self.ap = AudioPreprocessor(input_sr=100, output_sr=16000, device=device)
        self.phone2mel.eval()
        self.vocoder.eval()
        self.lang_id = get_language_id(language)
        self.to(torch.device(device))
        self.eval()

    def set_utterance_embedding(self, path_to_reference_audio="", embedding=None):
        if embedding is not None:
            self.default_utterance_embedding = embedding.squeeze().to(self.device)
            return
        if type(path_to_reference_audio) != list:
            path_to_reference_audio = [path_to_reference_audio]

        if len(path_to_reference_audio) > 0:
            for path in path_to_reference_audio:
                assert os.path.exists(path)
            speaker_embs = list()
            for path in path_to_reference_audio:
                wave, sr = soundfile.read(path)
                if len(wave.shape) > 1:  # oh no, we found a stereo audio!
                    if len(wave[0]) == 2:  # let's figure out whether we need to switch the axes
                        wave = wave.transpose()  # if yes, we switch the axes.
                wave = librosa.to_mono(wave)
                wave = Resample(orig_freq=sr, new_freq=16000).to(self.device)(torch.tensor(wave, device=self.device, dtype=torch.float32))
                speaker_embedding = self.speaker_embedding_func_ecapa.encode_batch(wavs=wave.to(self.device).squeeze().unsqueeze(0)).squeeze()
                speaker_embs.append(speaker_embedding)
            self.default_utterance_embedding = sum(speaker_embs) / len(speaker_embs)

    def set_language(self, lang_id):
        """
        The id parameter actually refers to the shorthand. This has become ambiguous with the introduction of the actual language IDs
        """
        self.set_phonemizer_language(lang_id=lang_id)
        self.set_accent_language(lang_id=lang_id)

    def set_phonemizer_language(self, lang_id):
        self.text2phone = ArticulatoryCombinedTextFrontend(language=lang_id, add_silence_to_end=True, device=self.device)

    def set_accent_language(self, lang_id):
        if lang_id in {'ajp', 'ajt', 'lak', 'lno', 'nul', 'pii', 'plj', 'slq', 'smd', 'snb', 'tpw', 'wya', 'zua', 'en-us', 'en-sc', 'fr-be', 'fr-sw', 'pt-br', 'spa-lat', 'vi-ctr', 'vi-so'}:
            if lang_id == 'vi-so' or lang_id == 'vi-ctr':
                lang_id = 'vie'
            elif lang_id == 'spa-lat':
                lang_id = 'spa'
            elif lang_id == 'pt-br':
                lang_id = 'por'
            elif lang_id == 'fr-sw' or lang_id == 'fr-be':
                lang_id = 'fra'
            elif lang_id == 'en-sc' or lang_id == 'en-us':
                lang_id = 'eng'
            else:
                # no clue where these others are even coming from, they are not in ISO 639-3
                lang_id = 'eng'

        self.lang_id = get_language_id(lang_id).to(self.device)

    def forward(self,
                text,
                view=False,
                duration_scaling_factor=1.0,
                pitch_variance_scale=1.0,
                energy_variance_scale=1.0,
                pause_duration_scaling_factor=1.0,
                durations=None,
                pitch=None,
                energy=None,
                input_is_phones=False,
                return_plot_as_filepath=False,
                loudness_in_db=-24.0,
                prosody_creativity=0.1):
        """
        duration_scaling_factor: reasonable values are 0.8 < scale < 1.2.
                                     1.0 means no scaling happens, higher values increase durations for the whole
                                     utterance, lower values decrease durations for the whole utterance.
        pitch_variance_scale: reasonable values are 0.6 < scale < 1.4.
                                  1.0 means no scaling happens, higher values increase variance of the pitch curve,
                                  lower values decrease variance of the pitch curve.
        energy_variance_scale: reasonable values are 0.6 < scale < 1.4.
                                   1.0 means no scaling happens, higher values increase variance of the energy curve,
                                   lower values decrease variance of the energy curve.
        """
        with torch.inference_mode():
            phones = self.text2phone.string_to_tensor(text, input_phonemes=input_is_phones).to(torch.device(self.device))
            mel, durations, pitch, energy = self.phone2mel(phones,
                                                           return_duration_pitch_energy=True,
                                                           utterance_embedding=self.default_utterance_embedding,
                                                           durations=durations,
                                                           pitch=pitch,
                                                           energy=energy,
                                                           lang_id=self.lang_id,
                                                           duration_scaling_factor=duration_scaling_factor,
                                                           pitch_variance_scale=pitch_variance_scale,
                                                           energy_variance_scale=energy_variance_scale,
                                                           pause_duration_scaling_factor=pause_duration_scaling_factor,
                                                           prosody_creativity=prosody_creativity)

            wave, _, _ = self.vocoder(mel.unsqueeze(0))
            wave = wave.squeeze().cpu()
        wave = wave.numpy()
        sr = 24000
        try:
            loudness = self.meter.integrated_loudness(wave)
            wave = pyloudnorm.normalize.loudness(wave, loudness, loudness_in_db)
        except ValueError:
            # if the audio is too short, a value error will arise
            pass

        if view or return_plot_as_filepath:
            fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(9, 5))

            ax.imshow(mel.cpu().numpy(), origin="lower", cmap='GnBu')
            ax.yaxis.set_visible(False)
            duration_splits, label_positions = cumsum_durations(durations.cpu().numpy())
            ax.xaxis.grid(True, which='minor')
            ax.set_xticks(label_positions, minor=False)
            if input_is_phones:
                phones = text.replace(" ", "|")
            else:
                phones = self.text2phone.get_phone_string(text, for_plot_labels=True)
            try:
                ax.set_xticklabels(phones)
            except IndexError:
                pass
            except ValueError:
                pass
            word_boundaries = list()
            for label_index, phone in enumerate(phones):
                if phone == "|":
                    word_boundaries.append(label_positions[label_index])

            try:
                prev_word_boundary = 0
                word_label_positions = list()
                for word_boundary in word_boundaries:
                    word_label_positions.append((word_boundary + prev_word_boundary) / 2)
                    prev_word_boundary = word_boundary
                word_label_positions.append((duration_splits[-1] + prev_word_boundary) / 2)

                secondary_ax = ax.secondary_xaxis('bottom')
                secondary_ax.tick_params(axis="x", direction="out", pad=24)
                secondary_ax.set_xticks(word_label_positions, minor=False)
                secondary_ax.set_xticklabels(text.split())
                secondary_ax.tick_params(axis='x', colors='orange')
                secondary_ax.xaxis.label.set_color('orange')
            except ValueError:
                ax.set_title(text)
            except IndexError:
                ax.set_title(text)

            ax.vlines(x=duration_splits, colors="green", linestyles="solid", ymin=0, ymax=120, linewidth=0.5)
            ax.vlines(x=word_boundaries, colors="orange", linestyles="solid", ymin=0, ymax=120, linewidth=1.0)
            plt.subplots_adjust(left=0.02, bottom=0.2, right=0.98, top=.9, wspace=0.0, hspace=0.0)
            ax.set_aspect("auto")

            if return_plot_as_filepath:
                plt.savefig("tmp.png")
                plt.close()
                return wave, sr, "tmp.png"
        return wave, sr

    def read_to_file(self,
                     text_list,
                     file_location,
                     duration_scaling_factor=1.0,
                     pitch_variance_scale=1.0,
                     energy_variance_scale=1.0,
                     pause_duration_scaling_factor=1.0,
                     silent=False,
                     dur_list=None,
                     pitch_list=None,
                     energy_list=None,
                     prosody_creativity=0.1):
        """
        Args:
            silent: Whether to be verbose about the process
            text_list: A list of strings to be read
            file_location: The path and name of the file it should be saved to
            energy_list: list of energy tensors to be used for the texts
            pitch_list: list of pitch tensors to be used for the texts
            dur_list: list of duration tensors to be used for the texts
            duration_scaling_factor: reasonable values are 0.8 < scale < 1.2.
                                     1.0 means no scaling happens, higher values increase durations for the whole
                                     utterance, lower values decrease durations for the whole utterance.
            pause_duration_scaling_factor: reasonable values are 0.8 < scale < 1.2.
                                     1.0 means no scaling happens, higher values increase durations for the pauses,
                                     lower values decrease durations for the whole utterance.
            pitch_variance_scale: reasonable values are 0.6 < scale < 1.4.
                                  1.0 means no scaling happens, higher values increase variance of the pitch curve,
                                  lower values decrease variance of the pitch curve.
            energy_variance_scale: reasonable values are 0.6 < scale < 1.4.
                                   1.0 means no scaling happens, higher values increase variance of the energy curve,
                                   lower values decrease variance of the energy curve.
            prosody_creativity: sampling temperature of the generative model that comes up with the pitch, energy and
                                durations. Higher values mena more variance, lower temperature means less variance across
                                generations. reasonable values are between 0.0 and 1.2, anything higher makes the voice
                                sound very weird.
        """
        if not dur_list:
            dur_list = []
        if not pitch_list:
            pitch_list = []
        if not energy_list:
            energy_list = []
        silence = torch.zeros([400])
        wav = silence.clone()
        for (text, durations, pitch, energy) in itertools.zip_longest(text_list, dur_list, pitch_list, energy_list):
            if text.strip() != "":
                if not silent:
                    print("Now synthesizing: {}".format(text))
                spoken_sentence, sr = self(text,
                                           durations=durations.to(self.device) if durations is not None else None,
                                           pitch=pitch.to(self.device) if pitch is not None else None,
                                           energy=energy.to(self.device) if energy is not None else None,
                                           duration_scaling_factor=duration_scaling_factor,
                                           pitch_variance_scale=pitch_variance_scale,
                                           energy_variance_scale=energy_variance_scale,
                                           pause_duration_scaling_factor=pause_duration_scaling_factor,
                                           prosody_creativity=prosody_creativity)
                spoken_sentence = torch.tensor(spoken_sentence).cpu()
                wav = torch.cat((wav, spoken_sentence, silence), 0)
        soundfile.write(file=file_location, data=float2pcm(wav), samplerate=sr, subtype="PCM_16")

    def read_aloud(self,
                   text,
                   view=False,
                   duration_scaling_factor=1.0,
                   pitch_variance_scale=1.0,
                   energy_variance_scale=1.0,
                   blocking=False,
                   prosody_creativity=0.1):
        if text.strip() == "":
            return
        wav, sr = self(text,
                       view,
                       duration_scaling_factor=duration_scaling_factor,
                       pitch_variance_scale=pitch_variance_scale,
                       energy_variance_scale=energy_variance_scale,
                       prosody_creativity=prosody_creativity)
        silence = torch.zeros([sr // 2])
        wav = torch.cat((silence, torch.tensor(wav), silence), 0).numpy()
        sounddevice.play(float2pcm(wav), samplerate=sr)
        if view:
            plt.show()
        if blocking:
            sounddevice.wait()