File size: 5,003 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2021 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
# Adapted by Florian Lux 2021


import librosa
import torch
import torch.nn.functional as F


class MelSpectrogram(torch.nn.Module):

    def __init__(self,
                 fs=24000,
                 fft_size=1536,
                 hop_size=384,
                 win_length=None,
                 window="hann",
                 num_mels=100,
                 fmin=60,
                 fmax=None,
                 center=True,
                 normalized=False,
                 onesided=True,
                 eps=1e-10,
                 log_base=10.0, ):
        super().__init__()
        self.fft_size = fft_size
        if win_length is None:
            self.win_length = fft_size
        else:
            self.win_length = win_length
        self.hop_size = hop_size
        self.center = center
        self.normalized = normalized
        self.onesided = onesided
        if window is not None and not hasattr(torch, f"{window}_window"):
            raise ValueError(f"{window} window is not implemented")
        self.window = window
        self.eps = eps

        fmin = 0 if fmin is None else fmin
        fmax = fs / 2 if fmax is None else fmax
        melmat = librosa.filters.mel(sr=fs,
                                     n_fft=fft_size,
                                     n_mels=num_mels,
                                     fmin=fmin,
                                     fmax=fmax, )
        self.register_buffer("melmat", torch.from_numpy(melmat.T).float())
        self.stft_params = {
            "n_fft"     : self.fft_size,
            "win_length": self.win_length,
            "hop_length": self.hop_size,
            "center"    : self.center,
            "normalized": self.normalized,
            "onesided"  : self.onesided,
        }
        self.stft_params["return_complex"] = False

        self.log_base = log_base
        if self.log_base is None:
            self.log = torch.log
        elif self.log_base == 2.0:
            self.log = torch.log2
        elif self.log_base == 10.0:
            self.log = torch.log10
        else:
            raise ValueError(f"log_base: {log_base} is not supported.")

    def forward(self, x):
        """
        Calculate Mel-spectrogram.

        Args:
            x (Tensor): Input waveform tensor (B, T) or (B, 1, T).

        Returns:
            Tensor: Mel-spectrogram (B, #mels, #frames).
        """
        if x.dim() == 3:
            # (B, C, T) -> (B*C, T)
            x = x.reshape(-1, x.size(2))

        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            window = window_func(self.win_length, dtype=x.dtype, device=x.device)
        else:
            window = None

        x_stft = torch.stft(x, window=window, **self.stft_params)
        # (B, #freqs, #frames, 2) -> (B, $frames, #freqs, 2)
        x_stft = x_stft.transpose(1, 2)
        x_power = x_stft[..., 0] ** 2 + x_stft[..., 1] ** 2
        x_amp = torch.sqrt(torch.clamp(x_power, min=self.eps))

        x_mel = torch.matmul(x_amp, self.melmat)
        x_mel = torch.clamp(x_mel, min=self.eps)

        return self.log(x_mel).transpose(1, 2)


class MelSpectrogramLoss(torch.nn.Module):

    def __init__(self,
                 fs=24000,
                 fft_size=1024,
                 hop_size=256,
                 win_length=None,
                 window="hann",
                 num_mels=128,
                 fmin=20,
                 fmax=None,
                 center=True,
                 normalized=False,
                 onesided=True,
                 eps=1e-10,
                 log_base=10.0, ):
        super().__init__()
        self.mel_spectrogram = MelSpectrogram(fs=fs,
                                              fft_size=fft_size,
                                              hop_size=hop_size,
                                              win_length=win_length,
                                              window=window,
                                              num_mels=num_mels,
                                              fmin=fmin,
                                              fmax=fmax,
                                              center=center,
                                              normalized=normalized,
                                              onesided=onesided,
                                              eps=eps,
                                              log_base=log_base, )

    def forward(self, y_hat, y):
        """
        Calculate Mel-spectrogram loss.

        Args:
            y_hat (Tensor): Generated single tensor (B, 1, T).
            y (Tensor): Groundtruth single tensor (B, 1, T).

        Returns:
            Tensor: Mel-spectrogram loss value.
        """
        mel_hat = self.mel_spectrogram(y_hat)
        mel = self.mel_spectrogram(y)
        mel_loss = F.l1_loss(mel_hat, mel)

        return mel_loss