File size: 10,263 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
MIT licensed code taken and adapted from https://github.com/rishikksh20/Avocodo-pytorch

Copyright (c) 2022 Rishikesh (ऋषिकेश)
adapted 2022, Florian Lux
"""

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import signal as sig
from torch.nn import Conv1d
from torch.nn.utils import spectral_norm
from torch.nn.utils import weight_norm

from Architectures.Vocoder.SAN_modules import SANConv1d


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


class MultiCoMBDiscriminator(torch.nn.Module):

    def __init__(self, kernels, channels, groups, strides):
        super(MultiCoMBDiscriminator, self).__init__()
        self.combd_1 = CoMBD(filters=channels, kernels=kernels[0], groups=groups, strides=strides)
        self.combd_2 = CoMBD(filters=channels, kernels=kernels[1], groups=groups, strides=strides)
        self.combd_3 = CoMBD(filters=channels, kernels=kernels[2], groups=groups, strides=strides)

        self.pqmf_2 = PQMF(N=2, taps=256, cutoff=0.25, beta=10.0)
        self.pqmf_4 = PQMF(N=8, taps=192, cutoff=0.13, beta=10.0)

    def forward(self, wave_final, intermediate_wave_upsampled_twice=None, intermediate_wave_upsampled_once=None, discriminator_train_flag=False):

        if intermediate_wave_upsampled_twice is not None and intermediate_wave_upsampled_once is not None:
            # get features of generated wave
            features_of_predicted = []

            out3, p3_fmap_hat = self.combd_3(wave_final, discriminator_train_flag)
            features_of_predicted = features_of_predicted + p3_fmap_hat

            x2_hat_ = self.pqmf_2(wave_final)[:, :1, :]
            x1_hat_ = self.pqmf_4(wave_final)[:, :1, :]

            out2, p2_fmap_hat_ = self.combd_2(intermediate_wave_upsampled_twice, discriminator_train_flag)
            features_of_predicted = features_of_predicted + p2_fmap_hat_

            out1, p1_fmap_hat_ = self.combd_1(intermediate_wave_upsampled_once, discriminator_train_flag)
            features_of_predicted = features_of_predicted + p1_fmap_hat_

            out22, p2_fmap_hat = self.combd_2(x2_hat_, discriminator_train_flag)
            features_of_predicted = features_of_predicted + p2_fmap_hat

            out12, p1_fmap_hat = self.combd_1(x1_hat_, discriminator_train_flag)
            features_of_predicted = features_of_predicted + p1_fmap_hat

            return [out1, out12, out2, out22, out3], features_of_predicted

        else:
            # get features of gold wave
            features_of_gold = []

            out3, p3_fmap = self.combd_3(wave_final, discriminator_train_flag)
            features_of_gold = features_of_gold + p3_fmap

            x2_ = self.pqmf_2(wave_final)[:, :1, :]  # Select first band
            x1_ = self.pqmf_4(wave_final)[:, :1, :]  # Select first band

            out2, p2_fmap_ = self.combd_2(x2_, discriminator_train_flag)
            features_of_gold = features_of_gold + p2_fmap_

            out1, p1_fmap_ = self.combd_1(x1_, discriminator_train_flag)
            features_of_gold = features_of_gold + p1_fmap_

            out22, p2_fmap = self.combd_2(x2_, discriminator_train_flag)
            features_of_gold = features_of_gold + p2_fmap

            out12, p1_fmap = self.combd_1(x1_, discriminator_train_flag)
            features_of_gold = features_of_gold + p1_fmap

            return [out1, out12, out2, out22, out3], features_of_gold


class MultiSubBandDiscriminator(torch.nn.Module):

    def __init__(self,
                 tkernels,
                 fkernel,
                 tchannels,
                 fchannels,
                 tstrides,
                 fstride,
                 tdilations,
                 fdilations,
                 tsubband,
                 n,
                 m,
                 freq_init_ch):
        super(MultiSubBandDiscriminator, self).__init__()

        self.fsbd = SubBandDiscriminator(init_channel=freq_init_ch, channels=fchannels, kernel=fkernel,
                                         strides=fstride, dilations=fdilations)

        self.tsubband1 = tsubband[0]
        self.tsbd1 = SubBandDiscriminator(init_channel=self.tsubband1, channels=tchannels, kernel=tkernels[0],
                                          strides=tstrides[0], dilations=tdilations[0])

        self.tsubband2 = tsubband[1]
        self.tsbd2 = SubBandDiscriminator(init_channel=self.tsubband2, channels=tchannels, kernel=tkernels[1],
                                          strides=tstrides[1], dilations=tdilations[1])

        self.tsubband3 = tsubband[2]
        self.tsbd3 = SubBandDiscriminator(init_channel=self.tsubband3, channels=tchannels, kernel=tkernels[2],
                                          strides=tstrides[2], dilations=tdilations[2])

        self.pqmf_n = PQMF(N=n, taps=256, cutoff=0.03, beta=10.0)
        self.pqmf_m = PQMF(N=m, taps=256, cutoff=0.1, beta=9.0)

    def forward(self, wave, discriminator_train_flag):
        fmap_hat = []

        # Time analysis
        xn_hat = self.pqmf_n(wave)

        q3_hat, feat_q3_hat = self.tsbd3(xn_hat[:, :self.tsubband3, :], discriminator_train_flag)
        fmap_hat = fmap_hat + feat_q3_hat

        q2_hat, feat_q2_hat = self.tsbd2(xn_hat[:, :self.tsubband2, :], discriminator_train_flag)
        fmap_hat = fmap_hat + feat_q2_hat

        q1_hat, feat_q1_hat = self.tsbd1(xn_hat[:, :self.tsubband1, :], discriminator_train_flag)
        fmap_hat = fmap_hat + feat_q1_hat

        # Frequency analysis
        xm_hat = self.pqmf_m(wave)

        xm_hat = xm_hat.transpose(-2, -1)

        q4_hat, feat_q4_hat = self.fsbd(xm_hat, discriminator_train_flag)
        fmap_hat = fmap_hat + feat_q4_hat

        return [q1_hat, q2_hat, q3_hat, q4_hat], fmap_hat


class CoMBD(torch.nn.Module):

    def __init__(self, filters, kernels, groups, strides, use_spectral_norm=False):
        super(CoMBD, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList()
        init_channel = 1
        for i, (f, k, g, s) in enumerate(zip(filters, kernels, groups, strides)):
            self.convs.append(norm_f(Conv1d(init_channel, f, k, s, padding=get_padding(k, 1), groups=g)))
            init_channel = f
        self.conv_post = norm_f(SANConv1d(filters[-1], 1, 3, 1, padding=get_padding(3, 1)))

    def forward(self, x, discriminator_train_flag):
        fmap = []
        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, 0.1)
            fmap.append(x)
        x = self.conv_post(x, discriminator_train_flag)
        # fmap.append(x)
        return x, fmap


class MDC(torch.nn.Module):

    def __init__(self, in_channel, channel, kernel, stride, dilations, use_spectral_norm=False):
        super(MDC, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = torch.nn.ModuleList()
        self.num_dilations = len(dilations)
        for d in dilations:
            self.convs.append(norm_f(Conv1d(in_channel, channel, kernel, stride=1, padding=get_padding(kernel, d),
                                            dilation=d)))

        self.conv_out = norm_f(SANConv1d(channel, channel, 3, stride=stride, padding=get_padding(3, 1)))

    def forward(self, x):
        xs = None
        for l in self.convs:
            if xs is None:
                xs = l(x)
            else:
                xs += l(x)

        x = xs / self.num_dilations

        x = self.conv_out(x)
        x = F.leaky_relu(x, 0.1)
        return x


class SubBandDiscriminator(torch.nn.Module):

    def __init__(self, init_channel, channels, kernel, strides, dilations, use_spectral_norm=False):
        super(SubBandDiscriminator, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm

        self.mdcs = torch.nn.ModuleList()

        for channel, stride, dilation in zip(channels, strides, dilations):
            self.mdcs.append(MDC(init_channel, channel, kernel, stride, dilation))
            init_channel = channel  # output channel of this layer becomes input channel of next layer
        self.conv_post = norm_f(SANConv1d(init_channel, 1, 3, padding=get_padding(3, 1)))

    def forward(self, x, discriminator_train_flag):
        fmap = []

        for l in self.mdcs:
            x = l(x)
            fmap.append(x)
        x = self.conv_post(x, discriminator_train_flag)
        # fmap.append(x)

        return x, fmap


# adapted from
# https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan
class PQMF(torch.nn.Module):

    def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0):
        super(PQMF, self).__init__()

        self.N = N
        self.taps = taps
        self.cutoff = cutoff
        self.beta = beta

        QMF = sig.firwin(taps + 1, cutoff, window=('kaiser', beta))
        H = np.zeros((N, len(QMF)))
        G = np.zeros((N, len(QMF)))
        for k in range(N):
            constant_factor = (2 * k + 1) * (np.pi /
                                             (2 * N)) * (np.arange(taps + 1) -
                                                         ((taps - 1) / 2))
            phase = (-1) ** k * np.pi / 4
            H[k] = 2 * QMF * np.cos(constant_factor + phase)

            G[k] = 2 * QMF * np.cos(constant_factor - phase)

        H = torch.from_numpy(H[:, None, :]).float()
        G = torch.from_numpy(G[None, :, :]).float()

        self.register_buffer("H", H)
        self.register_buffer("G", G)

        updown_filter = torch.zeros((N, N, N)).float()
        for k in range(N):
            updown_filter[k, k, 0] = 1.0
        self.register_buffer("updown_filter", updown_filter)
        self.N = N

        self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)

    def forward(self, x):
        return self.analysis(x)

    def analysis(self, x):
        return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N)

    def synthesis(self, x):
        x = F.conv_transpose1d(x,
                               self.updown_filter * self.N,
                               stride=self.N)
        x = F.conv1d(x, self.G, padding=self.taps // 2)
        return x