Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,446 Bytes
6faeba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import time
import torch
import torch.multiprocessing
import wandb
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from Preprocessing.EnCodecAudioPreprocessor import CodecAudioPreprocessor
from Utility.WarmupScheduler import ToucanWarmupScheduler as WarmupScheduler
from Utility.utils import delete_old_checkpoints
from Utility.utils import get_most_recent_checkpoint
from Utility.utils import plot_progress_spec_toucantts
from run_weight_averaging import average_checkpoints
from run_weight_averaging import get_n_recent_checkpoints_paths
from run_weight_averaging import load_net_toucan
from run_weight_averaging import save_model_for_use
def collate_and_pad(batch):
# text, text_len, speech, speech_len, durations, energy, pitch, utterance condition, language_id, speaker embedding
return (pad_sequence([datapoint[0] for datapoint in batch], batch_first=True).float(),
torch.stack([datapoint[1] for datapoint in batch]).squeeze(1),
[datapoint[2] for datapoint in batch],
torch.stack([datapoint[3] for datapoint in batch]).squeeze(1),
pad_sequence([datapoint[4] for datapoint in batch], batch_first=True),
pad_sequence([datapoint[5] for datapoint in batch], batch_first=True),
pad_sequence([datapoint[6] for datapoint in batch], batch_first=True),
None,
torch.stack([datapoint[8] for datapoint in batch]),
torch.stack([datapoint[9] for datapoint in batch]))
def train_loop(net,
train_dataset,
device,
save_directory,
batch_size,
lang,
lr,
warmup_steps,
path_to_checkpoint,
fine_tune,
resume,
steps,
use_wandb,
train_sampler,
gpu_count,
steps_per_checkpoint
):
"""
see train loop arbiter for explanations of the arguments
"""
net = net.to(device)
if gpu_count > 1:
rank = int(os.environ["LOCAL_RANK"])
else:
rank = 0
if steps_per_checkpoint is None:
steps_per_checkpoint = len(train_dataset) // batch_size
if steps < warmup_steps * 5:
print(f"too much warmup given the amount of steps, reducing warmup to {warmup_steps} steps")
warmup_steps = steps // 5
torch.multiprocessing.set_sharing_strategy('file_system')
batch_sampler_train = torch.utils.data.BatchSampler(train_sampler, batch_size, drop_last=True)
train_loader = DataLoader(dataset=train_dataset,
batch_sampler=batch_sampler_train,
num_workers=0, # has to be 0, otherwise copies of the dataset are created, which is not feasible for large scale trainings. This is not optimal for small trainings, but necessary for scalability.
pin_memory=True,
prefetch_factor=None,
collate_fn=collate_and_pad)
ap = CodecAudioPreprocessor(input_sr=-1, device=device)
spec_extractor = AudioPreprocessor(input_sr=16000, output_sr=16000, device=device)
step_counter = 0
if isinstance(net, torch.nn.parallel.DistributedDataParallel):
model = net.module
else:
model = net
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = WarmupScheduler(optimizer, peak_lr=lr, warmup_steps=warmup_steps, max_steps=steps)
epoch = 0
if resume:
path_to_checkpoint = get_most_recent_checkpoint(checkpoint_dir=save_directory)
if path_to_checkpoint is not None:
check_dict = torch.load(path_to_checkpoint, map_location=device)
model.load_state_dict(check_dict["model"])
if not fine_tune:
optimizer.load_state_dict(check_dict["optimizer"])
scheduler.load_state_dict(check_dict["scheduler"])
step_counter = check_dict["step_counter"]
start_time = time.time()
regression_losses_total = list()
stochastic_losses_total = list()
duration_losses_total = list()
pitch_losses_total = list()
energy_losses_total = list()
while True:
net.train()
epoch += 1
for batch in tqdm(train_loader):
text_tensors = batch[0].to(device)
text_lengths = batch[1].squeeze().to(device)
speech_indexes = batch[2]
speech_lengths = batch[3].squeeze().to(device)
gold_durations = batch[4].to(device)
gold_pitch = batch[6].to(device) # mind the switched order
gold_energy = batch[5].to(device) # mind the switched order
lang_ids = batch[8].squeeze(1).to(device)
speech_batch = list() # I wish this could be done in the collate function or in the getitem, but using DL models in multiprocessing on very large datasets causes just way too many issues.
for speech_sample in speech_indexes:
with torch.inference_mode():
wave = ap.indexes_to_audio(speech_sample.int().to(device)).detach()
mel = spec_extractor.audio_to_mel_spec_tensor(wave, explicit_sampling_rate=16000).transpose(0, 1).detach().cpu()
gold_speech_sample = mel.clone()
speech_batch.append(gold_speech_sample)
gold_speech = pad_sequence(speech_batch, batch_first=True).to(device)
run_stochastic = (step_counter > warmup_steps) or fine_tune
train_loss = 0.0
utterance_embedding = batch[9].to(device)
regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss = net(
text_tensors=text_tensors,
text_lengths=text_lengths,
gold_speech=gold_speech,
speech_lengths=speech_lengths,
gold_durations=gold_durations,
gold_pitch=gold_pitch,
gold_energy=gold_energy,
utterance_embedding=utterance_embedding,
lang_ids=lang_ids,
return_feats=False,
run_stochastic=run_stochastic
)
if torch.isnan(regression_loss) or torch.isnan(duration_loss) or torch.isnan(pitch_loss) or torch.isnan(energy_loss):
print("One of the losses turned to NaN! Skipping this batch ...")
continue
train_loss = train_loss + duration_loss
train_loss = train_loss + pitch_loss
train_loss = train_loss + energy_loss
train_loss = train_loss + regression_loss
regression_losses_total.append(regression_loss.item())
duration_losses_total.append(duration_loss.item())
pitch_losses_total.append(pitch_loss.item())
energy_losses_total.append(energy_loss.item())
if stochastic_loss is not None:
if torch.isnan(stochastic_loss):
print("Flow loss turned to NaN! Skipping this batch ...")
continue
stochastic_losses_total.append(stochastic_loss.item())
train_loss = train_loss + stochastic_loss
else:
stochastic_losses_total.append(0)
optimizer.zero_grad()
if type(train_loss) is float:
print("There is no loss for this step! Skipping ...")
continue
if gpu_count > 1:
torch.distributed.barrier()
train_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0, error_if_nonfinite=False)
optimizer.step()
scheduler.step()
step_counter += 1
if step_counter % steps_per_checkpoint == 0:
# evaluation interval is happening
if rank == 0:
net.eval()
default_embedding = train_dataset[0][9].to(device)
torch.save({
"model" : model.state_dict(),
"optimizer" : optimizer.state_dict(),
"step_counter": step_counter,
"scheduler" : scheduler.state_dict(),
"default_emb" : default_embedding,
"config" : model.config
}, os.path.join(save_directory, "checkpoint_{}.pt".format(step_counter)))
delete_old_checkpoints(save_directory, keep=5)
print(f"\nEpoch: {epoch}")
print(f"Time elapsed: {round((time.time() - start_time) / 60)} Minutes")
print("Reconstruction Loss: {}".format(round(sum(regression_losses_total) / len(regression_losses_total), 3)))
print(f"Steps: {step_counter}\n")
if use_wandb:
wandb.log({
"regression_loss": round(sum(regression_losses_total) / len(regression_losses_total), 5),
"stochastic_loss": round(sum(stochastic_losses_total) / len(stochastic_losses_total), 5),
"duration_loss" : round(sum(duration_losses_total) / len(duration_losses_total), 5),
"pitch_loss" : round(sum(pitch_losses_total) / len(pitch_losses_total), 5),
"energy_loss" : round(sum(energy_losses_total) / len(energy_losses_total), 5),
"learning_rate" : optimizer.param_groups[0]['lr']
}, step=step_counter)
regression_losses_total = list()
stochastic_losses_total = list()
duration_losses_total = list()
pitch_losses_total = list()
energy_losses_total = list()
path_to_most_recent_plot = plot_progress_spec_toucantts(model,
device,
save_dir=save_directory,
step=step_counter,
lang=lang,
default_emb=default_embedding,
run_stochastic=run_stochastic)
if use_wandb:
wandb.log({
"progress_plot": wandb.Image(path_to_most_recent_plot)
}, step=step_counter)
checkpoint_paths = get_n_recent_checkpoints_paths(checkpoint_dir=save_directory, n=1)
averaged_model, default_embed = average_checkpoints(checkpoint_paths, load_func=load_net_toucan)
save_model_for_use(model=averaged_model, default_embed=default_embed, name=os.path.join(save_directory, "best.pt"))
if step_counter > steps:
return # DONE
net.train()
print("\n\n\nEPOCH COMPLETE\n\n\n")
|