File size: 8,903 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Copied from https://github.com/KdaiP/StableTTS by https://github.com/KdaiP

https://github.com/KdaiP/StableTTS/blob/eebb177ebf195fd1246dedabec4ef69d9351a4f8/models/dit.py

Code is under MIT License
"""

# References:
# https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/transformer.py
# https://github.com/jaywalnut310/vits/blob/main/attentions.py
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py

import torch
import torch.nn as nn
import torch.nn.functional as F


class FFN(nn.Module):
    def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., gin_channels=0):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.gin_channels = gin_channels

        self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
        self.drop = nn.Dropout(p_dropout)
        self.act1 = nn.GELU(approximate="tanh")

    def forward(self, x, x_mask):
        x = self.conv_1(x * x_mask)
        x = self.act1(x)
        x = self.drop(x)
        x = self.conv_2(x * x_mask)
        return x * x_mask


class MultiHeadAttention(nn.Module):
    def __init__(self, channels, out_channels, n_heads, p_dropout=0.):
        super().__init__()
        assert channels % n_heads == 0

        self.channels = channels
        self.out_channels = out_channels
        self.n_heads = n_heads
        self.p_dropout = p_dropout

        self.k_channels = channels // n_heads
        self.conv_q = torch.nn.Conv1d(channels, channels, 1)
        self.conv_k = torch.nn.Conv1d(channels, channels, 1)
        self.conv_v = torch.nn.Conv1d(channels, channels, 1)

        # from https://nn.labml.ai/transformers/rope/index.html
        self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
        self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)

        self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
        self.drop = torch.nn.Dropout(p_dropout)

        torch.nn.init.xavier_uniform_(self.conv_q.weight)
        torch.nn.init.xavier_uniform_(self.conv_k.weight)
        torch.nn.init.xavier_uniform_(self.conv_v.weight)

    def forward(self, x, attn_mask=None):
        q = self.conv_q(x)
        k = self.conv_k(x)
        v = self.conv_v(x)

        x = self.attention(q, k, v, mask=attn_mask)

        x = self.conv_o(x)
        return x

    def attention(self, query, key, value, mask=None):
        b, d, t_s, t_t = (*key.size(), query.size(2))
        query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
        key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
        value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)

        query = self.query_rotary_pe(query)  # [b, n_head, t, c // n_head]
        key = self.key_rotary_pe(key)

        output = F.scaled_dot_product_attention(query, key, value, attn_mask=mask, dropout_p=self.p_dropout if self.training else 0)
        output = output.transpose(2, 3).contiguous().view(b, d, t_t)  # [b, n_h, t_t, d_k] -> [b, d, t_t]
        return output


# modified from https://github.com/sh-lee-prml/HierSpeechpp/blob/main/modules.py#L390
class DiTConVBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """

    def __init__(self, hidden_channels, out_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_channels + out_channels, elementwise_affine=False, eps=1e-6)
        self.attn = MultiHeadAttention(hidden_channels + out_channels, hidden_channels + out_channels, num_heads, p_dropout)
        self.norm2 = nn.LayerNorm(hidden_channels + out_channels, elementwise_affine=False, eps=1e-6)
        self.mlp = FFN(hidden_channels + out_channels, hidden_channels + out_channels, filter_channels, kernel_size, p_dropout=p_dropout)
        self.adaLN_modulation = nn.Sequential(
            nn.Linear(gin_channels, hidden_channels + out_channels) if gin_channels != hidden_channels + out_channels else nn.Identity(),
            nn.SiLU(),
            nn.Linear(hidden_channels + out_channels, 6 * (hidden_channels + out_channels), bias=True)
        )

    def forward(self, x, c, x_mask):
        """
        Args:
            x : [batch_size, channel, time]
            c : [batch_size, channel]
            x_mask : [batch_size, 1, time]
        return the same shape as x
        """
        x = x * x_mask
        attn_mask = x_mask.unsqueeze(1) * x_mask.unsqueeze(-1)  # shape: [batch_size, 1, time, time]
        # attn_mask = attn_mask.to(torch.bool)

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).unsqueeze(2).chunk(6, dim=1)  # shape: [batch_size, channel, 1]
        x = x + gate_msa * self.attn(self.modulate(self.norm1(x.transpose(1, 2)).transpose(1, 2), shift_msa, scale_msa), attn_mask) * x_mask
        # x = x.masked_fill(~x_mask, 0.0)
        x = x + gate_mlp * self.mlp(self.modulate(self.norm2(x.transpose(1, 2)).transpose(1, 2), shift_mlp, scale_mlp), x_mask) * x_mask

        # no condition version
        # x = x + self.attn(self.norm1(x.transpose(1,2)).transpose(1,2),  attn_mask)
        # x = x + self.mlp(self.norm1(x.transpose(1,2)).transpose(1,2), x_mask)
        return x

    @staticmethod
    def modulate(x, shift, scale):
        return x * (1 + scale) + shift


class RotaryPositionalEmbeddings(nn.Module):
    """
    ## RoPE module

    Rotary encoding transforms pairs of features by rotating in the 2D plane.
    That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
    Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
    by an angle depending on the position of the token.
    """

    def __init__(self, d: int, base: int = 10_000):
        r"""
        * `d` is the number of features $d$
        * `base` is the constant used for calculating $\Theta$
        """
        super().__init__()

        self.base = base
        self.d = int(d)
        self.cos_cached = None
        self.sin_cached = None

    def _build_cache(self, x: torch.Tensor):
        r"""
        Cache $\cos$ and $\sin$ values
        """
        # Return if cache is already built
        if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
            return

        # Get sequence length
        seq_len = x.shape[0]

        # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
        theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)

        # Create position indexes `[0, 1, ..., seq_len - 1]`
        seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)

        # Calculate the product of position index and $\theta_i$
        idx_theta = torch.einsum("n,d->nd", seq_idx, theta)

        # Concatenate so that for row $m$ we have
        # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
        idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)

        # Cache them
        self.cos_cached = idx_theta2.cos()[:, None, None, :]
        self.sin_cached = idx_theta2.sin()[:, None, None, :]

    def _neg_half(self, x: torch.Tensor):
        # $\frac{d}{2}$
        d_2 = self.d // 2

        # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
        return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)

    def forward(self, x: torch.Tensor):
        """
        * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
        """
        # Cache $\cos$ and $\sin$ values
        x = x.permute(2, 0, 1, 3)  # b h t d -> t b h d

        self._build_cache(x)

        # Split the features, we can choose to apply rotary embeddings only to a partial set of features.
        x_rope, x_pass = x[..., : self.d], x[..., self.d:]

        # Calculate
        # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
        neg_half_x = self._neg_half(x_rope)

        x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])

        return torch.cat((x_rope, x_pass), dim=-1).permute(1, 2, 0, 3)  # t b h d -> b h t d


class Transpose(nn.Identity):
    """(N, T, D) -> (N, D, T)"""

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return input.transpose(1, 2)