File size: 1,875 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
# Adapted by Florian Lux 2021

from abc import ABC

import torch

from Utility.utils import pad_list


class LengthRegulator(torch.nn.Module, ABC):
    """
    Length regulator module for feed-forward Transformer.

    This is a module of length regulator described in
    `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
    The length regulator expands char or
    phoneme-level embedding features to frame-level by repeating each
    feature based on the corresponding predicted durations.

    .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
        https://arxiv.org/pdf/1905.09263.pdf

    """

    def __init__(self, pad_value=0.0):
        """
        Initialize length regulator module.

        Args:
            pad_value (float, optional): Value used for padding.
        """
        super(LengthRegulator, self).__init__()
        self.pad_value = pad_value

    def forward(self, xs, ds, alpha=1.0):
        """
        Calculate forward propagation.
        Args:
            xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D).
            ds (LongTensor): Batch of durations of each frame (B, T).
            alpha (float, optional): Alpha value to control speed of speech.
        Returns:
            Tensor: replicated input tensor based on durations (B, T*, D).
        """

        if alpha != 1.0:
            assert alpha > 0
            ds = torch.round(ds.float() * alpha).long()

        if ds.sum() == 0:
            ds[ds.sum(dim=1).eq(0)] = 1

        return pad_list([self._repeat_one_sequence(x, d) for x, d in zip(xs, ds)], self.pad_value)

    def _repeat_one_sequence(self, x, d):
        """
        Repeat each frame according to duration
        """
        return torch.repeat_interleave(x, d, dim=0)