File size: 23,583 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

"""Encodec SEANet-based encoder and decoder implementation."""

import numpy as np

"""LSTM layers module."""

from torch import nn


class SLSTM(nn.Module):
    """
    LSTM without worrying about the hidden state, nor the layout of the data.
    Expects input as convolutional layout.
    """

    def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
        super().__init__()
        self.skip = skip
        self.lstm = nn.LSTM(dimension, dimension, num_layers)

    def forward(self, x):
        x = x.permute(2, 0, 1)
        y, _ = self.lstm(x)
        if self.skip:
            y = y + x
        y = y.permute(1, 2, 0)
        return y


"""Convolutional layers wrappers and utilities."""

import math
import warnings

from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm

"""Normalization modules."""

import typing as tp

import einops
import torch
from torch import nn


class ConvLayerNorm(nn.LayerNorm):
    """
    Convolution-friendly LayerNorm that moves channels to last dimensions
    before running the normalization and moves them back to original position right after.
    """

    def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
        super().__init__(normalized_shape, **kwargs)

    def forward(self, x):
        x = einops.rearrange(x, 'b ... t -> b t ...')
        x = super().forward(x)
        x = einops.rearrange(x, 'b t ... -> b ... t')
        return


CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
                                 'time_layer_norm', 'layer_norm', 'time_group_norm'])


def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
    assert norm in CONV_NORMALIZATIONS
    if norm == 'weight_norm':
        return weight_norm(module)
    elif norm == 'spectral_norm':
        return spectral_norm(module)
    else:
        # We already check was in CONV_NORMALIZATION, so any other choice
        # doesn't need reparametrization.
        return module


def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
    """Return the proper normalization module. If causal is True, this will ensure the returned
    module is causal, or return an error if the normalization doesn't support causal evaluation.
    """
    assert norm in CONV_NORMALIZATIONS
    if norm == 'layer_norm':
        assert isinstance(module, nn.modules.conv._ConvNd)
        return ConvLayerNorm(module.out_channels, **norm_kwargs)
    elif norm == 'time_group_norm':
        if causal:
            raise ValueError("GroupNorm doesn't support causal evaluation.")
        assert isinstance(module, nn.modules.conv._ConvNd)
        return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
    else:
        return nn.Identity()


def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
                                 padding_total: int = 0) -> int:
    """See `pad_for_conv1d`.
    """
    length = x.shape[-1]
    n_frames = (length - kernel_size + padding_total) / stride + 1
    ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
    return ideal_length - length


def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
    """Pad for a convolution to make sure that the last window is full.
    Extra padding is added at the end. This is required to ensure that we can rebuild
    an output of the same length, as otherwise, even with padding, some time steps
    might get removed.
    For instance, with total padding = 4, kernel size = 4, stride = 2:
        0 0 1 2 3 4 5 0 0   # (0s are padding)
        1   2   3           # (output frames of a convolution, last 0 is never used)
        0 0 1 2 3 4 5 0     # (output of tr. conv., but pos. 5 is going to get removed as padding)
            1 2 3 4         # once you removed padding, we are missing one time step !
    """
    extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
    return F.pad(x, (0, extra_padding))


def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
    """Tiny wrapper around F.pad, just to allow for reflect padding on small input.
    If this is the case, we insert extra 0 padding to the right before the reflection happen.
    """
    length = x.shape[-1]
    padding_left, padding_right = paddings
    assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
    if mode == 'reflect':
        max_pad = max(padding_left, padding_right)
        extra_pad = 0
        if length <= max_pad:
            extra_pad = max_pad - length + 1
            x = F.pad(x, (0, extra_pad))
        padded = F.pad(x, paddings, mode, value)
        end = padded.shape[-1] - extra_pad
        return padded[..., :end]
    else:
        return F.pad(x, paddings, mode, value)


def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
    """Remove padding from x, handling properly zero padding. Only for 1d!"""
    padding_left, padding_right = paddings
    assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
    assert (padding_left + padding_right) <= x.shape[-1]
    end = x.shape[-1] - padding_right
    return x[..., padding_left: end]


class NormConv1d(nn.Module):
    """Wrapper around Conv1d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """

    def __init__(self, *args, causal: bool = False, norm: str = 'none',
                 norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
        self.norm_type = norm

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        return x


class NormConv2d(nn.Module):
    """Wrapper around Conv2d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """

    def __init__(self, *args, norm: str = 'none',
                 norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
        self.norm_type = norm

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        return x


class NormConvTranspose1d(nn.Module):
    """Wrapper around ConvTranspose1d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """

    def __init__(self, *args, causal: bool = False, norm: str = 'none',
                 norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
        self.norm_type = norm

    def forward(self, x):
        x = self.convtr(x)
        x = self.norm(x)
        return x


class NormConvTranspose2d(nn.Module):
    """Wrapper around ConvTranspose2d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """

    def __init__(self, *args, norm: str = 'none',
                 norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)

    def forward(self, x):
        x = self.convtr(x)
        x = self.norm(x)
        return x


class SConv1d(nn.Module):
    """Conv1d with some builtin handling of asymmetric or causal padding
    and normalization.
    """

    def __init__(self, in_channels: int, out_channels: int,
                 kernel_size: int, stride: int = 1, dilation: int = 1,
                 groups: int = 1, bias: bool = True, causal: bool = False,
                 norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
                 pad_mode: str = 'reflect'):
        super().__init__()
        # warn user on unusual setup between dilation and stride
        if stride > 1 and dilation > 1:
            warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
                          f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
        self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
                               dilation=dilation, groups=groups, bias=bias, causal=causal,
                               norm=norm, norm_kwargs=norm_kwargs)
        self.causal = causal
        self.pad_mode = pad_mode

    def forward(self, x):
        B, C, T = x.shape
        kernel_size = self.conv.conv.kernel_size[0]
        stride = self.conv.conv.stride[0]
        dilation = self.conv.conv.dilation[0]
        padding_total = (kernel_size - 1) * dilation - (stride - 1)
        extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
        if self.causal:
            # Left padding for causal
            x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
        else:
            # Asymmetric padding required for odd strides
            padding_right = padding_total // 2
            padding_left = padding_total - padding_right
            x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
        return self.conv(x)


class SConvTranspose1d(nn.Module):
    """ConvTranspose1d with some builtin handling of asymmetric or causal padding
    and normalization.
    """

    def __init__(self, in_channels: int, out_channels: int,
                 kernel_size: int, stride: int = 1, causal: bool = False,
                 norm: str = 'none', trim_right_ratio: float = 1.,
                 norm_kwargs: tp.Dict[str, tp.Any] = {}):
        super().__init__()
        self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
                                          causal=causal, norm=norm, norm_kwargs=norm_kwargs)
        self.causal = causal
        self.trim_right_ratio = trim_right_ratio
        assert self.causal or self.trim_right_ratio == 1., \
            "`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
        assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.

    def forward(self, x):
        kernel_size = self.convtr.convtr.kernel_size[0]
        stride = self.convtr.convtr.stride[0]
        padding_total = kernel_size - stride

        y = self.convtr(x)

        # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
        # removed at the very end, when keeping only the right length for the output,
        # as removing it here would require also passing the length at the matching layer
        # in the encoder.
        if self.causal:
            # Trim the padding on the right according to the specified ratio
            # if trim_right_ratio = 1.0, trim everything from right
            padding_right = math.ceil(padding_total * self.trim_right_ratio)
            padding_left = padding_total - padding_right
            y = unpad1d(y, (padding_left, padding_right))
        else:
            # Asymmetric padding required for odd strides
            padding_right = padding_total // 2
            padding_left = padding_total - padding_right
            y = unpad1d(y, (padding_left, padding_right))
        return y


class SEANetResnetBlock(nn.Module):
    """Residual block from SEANet model.
    Args:
        dim (int): Dimension of the input/output
        kernel_sizes (list): List of kernel sizes for the convolutions.
        dilations (list): List of dilations for the convolutions.
        activation (str): Activation function.
        activation_params (dict): Parameters to provide to the activation function
        norm (str): Normalization method.
        norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution.
        causal (bool): Whether to use fully causal convolution.
        pad_mode (str): Padding mode for the convolutions.
        compress (int): Reduced dimensionality in residual branches (from Demucs v3)
        true_skip (bool): Whether to use true skip connection or a simple convolution as the skip connection.
    """

    def __init__(self, dim: int, kernel_sizes: tp.List[int] = [3, 1], dilations: tp.List[int] = [1, 1],
                 activation: str = 'ELU', activation_params: dict = {'alpha': 1.0},
                 norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, causal: bool = False,
                 pad_mode: str = 'reflect', compress: int = 2, true_skip: bool = True):
        super().__init__()
        assert len(kernel_sizes) == len(dilations), 'Number of kernel sizes should match number of dilations'
        act = getattr(nn, activation)
        hidden = dim // compress
        block = []
        for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
            in_chs = dim if i == 0 else hidden
            out_chs = dim if i == len(kernel_sizes) - 1 else hidden
            block += [
                act(**activation_params),
                SConv1d(in_chs, out_chs, kernel_size=kernel_size, dilation=dilation,
                        norm=norm, norm_kwargs=norm_params,
                        causal=causal, pad_mode=pad_mode),
            ]
        self.block = nn.Sequential(*block)
        self.shortcut: nn.Module
        if true_skip:
            self.shortcut = nn.Identity()
        else:
            self.shortcut = SConv1d(dim, dim, kernel_size=1, norm=norm, norm_kwargs=norm_params,
                                    causal=causal, pad_mode=pad_mode)

    def forward(self, x):
        return self.shortcut(x) + self.block(x)


class SEANetEncoder(nn.Module):
    """SEANet encoder.
    Args:
        channels (int): Audio channels.
        dimension (int): Intermediate representation dimension.
        n_filters (int): Base width for the model.
        n_residual_layers (int): nb of residual layers.
        ratios (Sequence[int]): kernel size and stride ratios. The encoder uses downsampling ratios instead of
            upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here
            that must match the decoder order
        activation (str): Activation function.
        activation_params (dict): Parameters to provide to the activation function
        norm (str): Normalization method.
        norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution.
        kernel_size (int): Kernel size for the initial convolution.
        last_kernel_size (int): Kernel size for the initial convolution.
        residual_kernel_size (int): Kernel size for the residual layers.
        dilation_base (int): How much to increase the dilation with each layer.
        causal (bool): Whether to use fully causal convolution.
        pad_mode (str): Padding mode for the convolutions.
        true_skip (bool): Whether to use true skip connection or a simple
            (streamable) convolution as the skip connection in the residual network blocks.
        compress (int): Reduced dimensionality in residual branches (from Demucs v3).
        lstm (int): Number of LSTM layers at the end of the encoder.
    """

    def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1,
                 ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0},
                 norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7,
                 last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False,
                 pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2):
        super().__init__()
        self.channels = channels
        self.dimension = dimension
        self.n_filters = n_filters
        self.ratios = list(reversed(ratios))
        del ratios
        self.n_residual_layers = n_residual_layers
        self.hop_length = np.prod(self.ratios)  # 计算乘积

        act = getattr(nn, activation)
        mult = 1
        model: tp.List[nn.Module] = [
            SConv1d(channels, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params,
                    causal=causal, pad_mode=pad_mode)
        ]
        # Downsample to raw audio scale
        for i, ratio in enumerate(self.ratios):
            # Add residual layers
            for j in range(n_residual_layers):
                model += [
                    SEANetResnetBlock(mult * n_filters, kernel_sizes=[residual_kernel_size, 1],
                                      dilations=[dilation_base ** j, 1],
                                      norm=norm, norm_params=norm_params,
                                      activation=activation, activation_params=activation_params,
                                      causal=causal, pad_mode=pad_mode, compress=compress, true_skip=true_skip)]

            # Add downsampling layers
            model += [
                act(**activation_params),
                SConv1d(mult * n_filters, mult * n_filters * 2,
                        kernel_size=ratio * 2, stride=ratio,
                        norm=norm, norm_kwargs=norm_params,
                        causal=causal, pad_mode=pad_mode),
            ]
            mult *= 2

        if lstm:
            model += [SLSTM(mult * n_filters, num_layers=lstm)]

        model += [
            act(**activation_params),
            SConv1d(mult * n_filters, dimension, last_kernel_size, norm=norm, norm_kwargs=norm_params,
                    causal=causal, pad_mode=pad_mode)
        ]

        self.model = nn.Sequential(*model)

    def forward(self, x):
        return self.model(x)


class SEANetDecoder(nn.Module):
    """SEANet decoder.
    Args:
        channels (int): Audio channels.
        dimension (int): Intermediate representation dimension.
        n_filters (int): Base width for the model.
        n_residual_layers (int): nb of residual layers.
        ratios (Sequence[int]): kernel size and stride ratios
        activation (str): Activation function.
        activation_params (dict): Parameters to provide to the activation function
        final_activation (str): Final activation function after all convolutions.
        final_activation_params (dict): Parameters to provide to the activation function
        norm (str): Normalization method.
        norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution.
        kernel_size (int): Kernel size for the initial convolution.
        last_kernel_size (int): Kernel size for the initial convolution.
        residual_kernel_size (int): Kernel size for the residual layers.
        dilation_base (int): How much to increase the dilation with each layer.
        causal (bool): Whether to use fully causal convolution.
        pad_mode (str): Padding mode for the convolutions.
        true_skip (bool): Whether to use true skip connection or a simple
            (streamable) convolution as the skip connection in the residual network blocks.
        compress (int): Reduced dimensionality in residual branches (from Demucs v3).
        lstm (int): Number of LSTM layers at the end of the encoder.
        trim_right_ratio (float): Ratio for trimming at the right of the transposed convolution under the causal setup.
            If equal to 1.0, it means that all the trimming is done at the right.
    """

    def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1,
                 ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0},
                 final_activation: tp.Optional[str] = None, final_activation_params: tp.Optional[dict] = None,
                 norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7,
                 last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False,
                 pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2,
                 trim_right_ratio: float = 1.0):
        super().__init__()
        self.dimension = dimension
        self.channels = channels
        self.n_filters = n_filters
        self.ratios = ratios
        del ratios
        self.n_residual_layers = n_residual_layers
        self.hop_length = np.prod(self.ratios)

        act = getattr(nn, activation)
        mult = int(2 ** len(self.ratios))
        model: tp.List[nn.Module] = [
            SConv1d(dimension, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params,
                    causal=causal, pad_mode=pad_mode)
        ]

        if lstm:
            model += [SLSTM(mult * n_filters, num_layers=lstm)]

        # Upsample to raw audio scale
        for i, ratio in enumerate(self.ratios):
            # Add upsampling layers
            model += [
                act(**activation_params),
                SConvTranspose1d(mult * n_filters, mult * n_filters // 2,
                                 kernel_size=ratio * 2, stride=ratio,
                                 norm=norm, norm_kwargs=norm_params,
                                 causal=causal, trim_right_ratio=trim_right_ratio),
            ]
            # Add residual layers
            for j in range(n_residual_layers):
                model += [
                    SEANetResnetBlock(mult * n_filters // 2, kernel_sizes=[residual_kernel_size, 1],
                                      dilations=[dilation_base ** j, 1],
                                      activation=activation, activation_params=activation_params,
                                      norm=norm, norm_params=norm_params, causal=causal,
                                      pad_mode=pad_mode, compress=compress, true_skip=true_skip)]

            mult //= 2

        # Add final layers
        model += [
            act(**activation_params),
            SConv1d(n_filters, channels, last_kernel_size, norm=norm, norm_kwargs=norm_params,
                    causal=causal, pad_mode=pad_mode)
        ]
        # Add optional final activation to decoder (eg. tanh)
        if final_activation is not None:
            final_act = getattr(nn, final_activation)
            final_activation_params = final_activation_params or {}
            model += [
                final_act(**final_activation_params)
            ]
        self.model = nn.Sequential(*model)

    def forward(self, z):
        y = self.model(z)
        return y


def test():
    import torch
    encoder = SEANetEncoder()
    decoder = SEANetDecoder()
    x = torch.randn(1, 1, 24000)
    z = encoder(x)
    print('z ', z.shape)
    assert 1 == 2
    assert list(z.shape) == [1, 128, 75], z.shape
    y = decoder(z)
    assert y.shape == x.shape, (x.shape, y.shape)


if __name__ == '__main__':
    test()