Spaces:
Runtime error
Runtime error
changes on app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
3 |
from peft import PeftModel
|
4 |
import re
|
5 |
import os
|
@@ -12,6 +12,7 @@ import math
|
|
12 |
from datetime import date
|
13 |
from datetime import date, datetime, timedelta
|
14 |
|
|
|
15 |
access_token = os.environ["TOKEN"]
|
16 |
|
17 |
# load model
|
@@ -22,7 +23,9 @@ tokenizer = AutoTokenizer.from_pretrained(model, token = access_token, trust_rem
|
|
22 |
tokenizer.pad_token = tokenizer.eos_token
|
23 |
tokenizer.padding_side = "right"
|
24 |
|
25 |
-
|
|
|
|
|
26 |
model = PeftModel.from_pretrained(model, peft_model, offload_folder="offload/")
|
27 |
|
28 |
model = model.eval()
|
@@ -366,7 +369,10 @@ def get_all_prompts_online(symbol, with_basics=True, max_news_perweek = 3, weeks
|
|
366 |
new_system_prompt = SYSTEM_PROMPT.replace(':\n...', ':\n预测涨跌幅:...\n总结分析:...')
|
367 |
prompt = B_INST + B_SYS + new_system_prompt + E_SYS + info + f"\n\n基于在{end_date}之前的所有信息,让我们首先分析{stock}的积极发展和潜在担忧。请简洁地陈述,分别提出2-4个最重要的因素。大部分所提及的因素应该从公司的相关新闻中推断出来。" \
|
368 |
f"接下来请预测{symbol}下周({period})的股票涨跌幅,并提供一个总结分析来支持你的预测。" + E_INST
|
369 |
-
|
|
|
|
|
|
|
370 |
return info, prompt
|
371 |
|
372 |
|
@@ -382,7 +388,9 @@ def ask(symbol, weeks_before):
|
|
382 |
|
383 |
res = model.generate(
|
384 |
**inputs,
|
385 |
-
use_cache=True
|
|
|
|
|
386 |
)
|
387 |
output = tokenizer.decode(res[0], skip_special_tokens=True)
|
388 |
output_cur = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
3 |
from peft import PeftModel
|
4 |
import re
|
5 |
import os
|
|
|
12 |
from datetime import date
|
13 |
from datetime import date, datetime, timedelta
|
14 |
|
15 |
+
|
16 |
access_token = os.environ["TOKEN"]
|
17 |
|
18 |
# load model
|
|
|
23 |
tokenizer.pad_token = tokenizer.eos_token
|
24 |
tokenizer.padding_side = "right"
|
25 |
|
26 |
+
streamer = TextStreamer(tokenizer)
|
27 |
+
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(model, trust_remote_code=True, token = access_token, device_map="cuda", load_in_8bit=True, offload_folder="offload/")
|
29 |
model = PeftModel.from_pretrained(model, peft_model, offload_folder="offload/")
|
30 |
|
31 |
model = model.eval()
|
|
|
369 |
new_system_prompt = SYSTEM_PROMPT.replace(':\n...', ':\n预测涨跌幅:...\n总结分析:...')
|
370 |
prompt = B_INST + B_SYS + new_system_prompt + E_SYS + info + f"\n\n基于在{end_date}之前的所有信息,让我们首先分析{stock}的积极发展和潜在担忧。请简洁地陈述,分别提出2-4个最重要的因素。大部分所提及的因素应该从公司的相关新闻中推断出来。" \
|
371 |
f"接下来请预测{symbol}下周({period})的股票涨跌幅,并提供一个总结分析来支持你的预测。" + E_INST
|
372 |
+
|
373 |
+
del prev_rows
|
374 |
+
del data
|
375 |
+
|
376 |
return info, prompt
|
377 |
|
378 |
|
|
|
388 |
|
389 |
res = model.generate(
|
390 |
**inputs,
|
391 |
+
use_cache=True,
|
392 |
+
max_length = 4096,
|
393 |
+
streamer=streamer
|
394 |
)
|
395 |
output = tokenizer.decode(res[0], skip_special_tokens=True)
|
396 |
output_cur = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)
|